AGENDA REPORT

TO: Sabrina B. Landreth
City Administrator
SUBJECT: 285 and $30112^{\text {th }}$ Street Appeal

FROM: Darin Ranelletti
Interim Director, DPB
DATE: November 18, 2016

RECOMMENDATION

Staff Recommends That The City Council Conduct A Public Hearing And Upon Conclusion Consider Adopting A Resolution Denying Appeals By Both Oakland Residents For Responsible Development And The W12 Benefits Coalitions, And Thus Upholding The Planning Commission's Approval Of A Proposal To Construct Two 7Story Mixed Use Buildings Containing A Total Of 416 Dwelling Units And Approximately 26,200 Square Feet Of Commercial Located At 285 And 301 12th Street, Oakland CA (Project Case No. PLN16133), Including Adopting CEQA Exemptions (15183 \& 15183.3) And Addendum (Relying On The Previously Certified 2014 Lake Merritt Station Area Plan EIR).

REASON FOR SUPPLEMENTAL

On November 18, 2016, following finalization of the Agenda Report for the November 29, 2016 City Council meeting, the Project applicant submitted documents that provide additional and clarifying information regarding the Project's reduction of construction emissions.

As stated in the Project's CEQA Analysis, the November 7, 2016 and August 12, 2016 ESA CEQA Response Memoranda, and other City responses to similar comments raised by Adams Broadwell for other projects within the Lake Merritt Station Plan (LMSAP) area, the LMSAP Environmental Impact Report (EIR) analyzed construction-related health risks (see Impact AIR3) and determined impacts to be less than significant with implementation of Standard Condition of Approval (SCA) A (referred to as SCA AIR-1 in the CEQA Analysis). As stated on page 3.339 of the LMSAP EIR, "...SCA A would implement construction-related Best Management Practices to substantially reduce construction-related impacts to a less-than-significant level." Nothing in the LMSAP EIR indicated that a stand-alone Health Risk Assessment (HRA) for construction-related impacts is required on a project-by-project basis. Nevertheless, the Project sponsor voluntarily acted in good faith to retain a consultant (FirstCarbon Solutions) to prepare a project-level construction HRA for the Project (see Attachment A).

The HRA determined that the Project's construction emissions would not exceed the City of Oakland's project-level health risk thresholds of significance after application of standard conditions of acceptance and mitigation measures. The Project's construction emissions in

Item:
combination with TAC emissions from sources of TAC emissions within 1,000 feet of the project would not expose nearby sensitive receptors to cancer risks or hazard levels that exceed the City of Oakland's cumulative health risk thresholds of significance. Therefore, as previously concluded, the construction of the Project would not result in a project-level or cumulative significant health risk impact and would not result in a more severe impact than what was disclosed in the LMSAP EIR.

In addition, staff received a letter from the Project applicant confirming the availability of the Tier 4 off-road equipment that will be used during construction (Attachment B). The availability of Tier 4 off-road construction equipment has been a primary point in the appellant's argument that the Project would create construction period health risk impacts that were not identified in the LMSAP EIR, and have argued that the City's SCA requiring the use of Tier 4 equipment is not adequate mitigation due to the lack of availability of such equipment. Staff is also including into the record two letters on behalf of Oakland Residents for Responsible Development, the same appellant on a project at 4th \& Madison Streets and $22613^{\text {th }}$ Streets in Oakland where the appellant states that, in fact, the City's SCA requiring Tier 4 equipment is sufficient mitigation to address construction period health risks (Attachment C), which is contrary to the claims that they are making on this appeal.

ACTION REQUESTED OF THE CITY COUNCIL

Staff recommends that the City Council adopt a resolution denying the appeals from Oakland Residents for Responsible Development and the W12 Benefits Coalition, and upholding the Planning Commission's approval of a proposal to construct 416 dwelling units over approximately 26,000 square feet of retail located at 285 and $301 \mathbf{1 2}^{\text {th }}$ Street, Oakland CA (Project Case No. PLN16-133), including adopting CEQA Exemptions (15183 \& 15183.3) and Addendum (Relying on the previously certified 2014 Lake Merritt Station Area Plan EIR)

For questions regarding this report, please contact Christina Ferracane, Planner III, at (510) 238-3903.

Respectfully submitted,

Darin Ranelletti
Interim Director, Department of Planning \& Building

Reviewed by:
Robert Merkamp, Development Manager

Prepared by:
Christina Ferracane, Planner III
Bureau of Planning
Attachments:
A. Construction Health Risk Assessment for the W12 Mixed Use Project
B. Confirmation Regarding Availability of Tier 4 Construction Equipment for the W12 Mixed Use Project
C. March 16, 2016 and November 14, 2016 Letters from Adams and Broadwell on the $4^{\text {th }}$ and Madison and $22613^{\text {th }}$ Street Projects

Memo

Date: November 14, 2016

	Ms. Jennifer Renk, Partner
To: \quadSheppard Mullin	
Four Embarcadero Center	
San Francisco, CA, 94111	

From: Jason Brandman, Vice President

Subject: Construction Health Risk Assessment for the W12 Mixed Use Project, Oakland, CA

Purpose

The purpose of this report is to provide a health risk assessment to determine whether toxic air contaminant (TAC) emissions from the construction of the W12 Mixed Use Project (project) would exceed health risk thresholds of significance established by the City of Oakland. ${ }^{1}$ This report relied upon the guidance and tools developed by the Bay Area Air Quality Management District (BAAQMD) to assist in performing such health risk assessments. In accordance with BAAQMD guidance and tools, the project's construction TAC emissions were quantified and potential associated health risks analyzed at the nearest sensitive receptors to the project. In addition, all sources of TAC emissions located within 1,000 feet of the project were also identified and their potential cumulative health impacts along with those from the project construction were quantified.

This assessment also relied on the project's CEQA Analysis ${ }^{2}$ prepared for this project. The CEQA checklist contained within the CEQA Analysis and its supporting information provided data on the project's construction emissions, project-level and cumulative impacts, and requisite standard conditions of approval and mitigation measures to minimize the project's air quality and health risk impacts. The information contained within the CEQA Analysis is incorporated by reference.

Project Location

The project applicant, Emerge Development, LLC, is proposing to develop two 7-story, approximately 87-foot-tall buildings containing up to 416 residential units; approximately 25,050 square feet of commercial space; and up to 317 on-site parking spaces. The project site consists of two parcels located on the $30112^{\text {th }}$ Street (Assessor's Parcel Number 002-006300600) and $28512^{\text {th }}$ Street (Assessor's Parcel Number 002-00960301). On the block bound by $11^{\text {th }}, 12^{\text {th }}$, Webster, and Harrison Streets (referred to as

[^0]Ms. Jennifer Renk
November 11, 2016
Page 2
the "Full Block"), the project would construct one 7-story structure, "Building A." This building would include 339 residential units and approximately 23,400 square feet of ground-floor commercial use. The portion of the project site across Harrison Street (referred to as the "Quarter Block") would be developed with a 7-story structure, "Building B." This building would include 77 residential units and approximately 1,650 square feet of ground-floor commercial use. The Full Block is currently occupied by a single structure being used for a school (Downtown Oakland Charter School) and public parking. The Quarter Block is vacant and serves as a paved recreation area for the Downtown Oakland Charter School. The up to 317 vehicular parking spaces provided on-site would include regular (single stall) and tandem parking spaces. A residential loading area also would be located on the first floor of each building. Exhibit 1 provides the location of the project, while Exhibit 2 provides a site plan for the project.

The project construction period is expected to last between 18 and 24 months. Construction activities on the project site would consist of excavation and shoring, foundation and below-grade construction, and construction of the project building and finishing interiors. However, the information contained within the air quality assessment of the CEQA Analysis assumed that the construction would commence in January 2017 and would be completed in December 2017. This represents a conservative assumption in that the emissions are concentrated in a single year (2017) rather than being spread in lower amounts over 2 years. This is particularly important because of the way the BAAQMD guidance on estimating cancer risks is employed, which weights a project's TAC emissions in its earliest years of construction far greater than the emissions in later years. The project was assumed to be occupied beginning in January 2020.

Sensitive receptors in the form of existing residences and schools are located in various directions from the project. The closest residential receptors are located at:

- 1238 Harrison Street at $12^{\text {th }}$ Street, 82 feet north of the project
- Hotel Oakland, north of the project, 335 feet north of the project
- $37011^{\text {th }}$ Street at Webster Street, 60 feet west of the project

Lincoln Elementary School is located approximately 500 feet southeast of the project. Exhibit 3 provides the locations of nearby sensitive receptors.

Project Summary

This health risk assessment consisted of four principal components:

1. Quantify the TAC emissions from the construction of the project.
2. Identify the sources of TAC emissions and their emission levels located within a 1,000 -foot radius from the project.
3. Estimate the health impacts to surrounding sensitive receptors such as residences and schools from the project-level construction emissions using a refined air dispersion modeling assessment and as part of the cumulative assessment of health risks from the identified sources of TAC emissions within 1,000 feet of the project.

Ms. Jennifer Renk
November 11, 2016
Page 3
4. Compare the resulting project-level and cumulative health impacts with health risk thresholds of significance adopted by the City of Oakland.

On the basis of the assessment provided herein,

- The project's construction emissions would not exceed the City of Oakland's project-level health risk thresholds of significance after application of standard conditions of acceptance and mitigation measures.
- The project's construction emissions in combination with TAC emissions from sources of TAC emissions within 1,000 feet of the project would not expose nearby sensitive receptors to cancer risks or hazard levels that exceed the City of Oakland's cumulative health risk thresholds of significance.
- Therefore, the construction of the project would not result in a project-level or cumulative significant health risk impact and would not result in a more severe impact than what was disclosed in the Lake Merritt Station Area Plan Environmental Impact Report.

Toxics Air Contaminants of Concern

TACs are air pollutants present in miniscule amounts in the air that, if a person is exposed to them for a period of time, could increase the chances of experiencing health problems. Exposures to TAC emissions can have both chronic long-term (over a year or longer) and acute short-term (over a period of hours) health impacts. The TACs of greatest concern are those that cause serious health problems or affect many people. Health problems can include cancer, respiratory irritation, nervous system problems, and birth defects. Some health problems occur very soon after a person inhales a TAC. These immediate effects may be minor, such as watery eyes; or they may be serious, such as life-threatening lung damage. Other health problems may not appear until many months or years after a person's first exposure to the TAC. Cancer is one example of a delayed health problem.

This assessment focuses on particulate pollution, which is a mixture of microscopic solids and liquid droplets suspended in air. This pollution, also known as particulate matter, is made up of a number of components, including acids (such as nitrates and sulfates), organic chemicals, metals, soil or dust particles, and allergens (such as fragments of pollen or mold spores).

Fine particle pollution or $\mathrm{PM}_{2.5}$ describes particulate matter that is 2.5 micrometers in diameter and smaller-one-thirtieth the diameter of a human hair. Fine particle pollution can be emitted directly or formed secondarily in the atmosphere. $\mathrm{PM}_{2.5}$ health impacts are important because their size can be deposited deeply in the lungs causing respiratory effects.

Source: W12 Mixed Use Project CEQA Analysis July 2016
Exhibit 1
Regional Location Map
 s

FIRSTCARBON
SOLUTIONS
$32660012 \cdot 11 / 2016$ \| 1_regional.cdr

Source: W12 Mixed Use Project CEQA Analysis July 2016
Exhibit 2 Site Plan
32660012 • 11/2016 | 2_siteplan.cdr

- Sensitive

Ms. Jennifer Renk
November 11, 2016
Page 7

For purposes of this study, exhaust emissions of $\mathrm{PM}_{2.5}$ are represented as diesel particulate matter (DPM), a major component of PM $_{2.5}$. Studies indicate that DPM poses the greatest health risk among airborne TACs. A 10-year research program (ARB 1998) ${ }^{3}$ demonstrated that DPM from diesel-fueled engines is a human carcinogen and that chronic (long-term) inhalation exposure to DPM poses a chronic long-term health risk. DPM differs from other TACs in that it is not a single substance but a complex mixture of hundreds of substances. Although DPM is emitted by diesel-fueled, internal combustion engines, the composition of the emissions varies, depending on engine type, operating conditions, fuel composition, lubricating oil, and whether an emission control system is present. Unlike the other TACs, however, no ambient monitoring data are available for DPM because no routine measurement method currently exists. The California Air Resources Board (ARB) has made preliminary concentration estimates based on a DPM exposure method. This method uses the ARB emissions inventory's PM ${ }_{10}$ database, ambient $\mathrm{PM}_{2.5}$ monitoring data, and the results from several studies to estimate concentrations of DPM.

Standard Conditions of Approval and Mitigation Measure Applicable to the Project

The CEQA Analysis and accompanying Checklist provides a summary of the potential environmental impacts that may result from adoption and implementation of the Lake Merritt Station Area Plan $(\text { LMSAP })^{4}$ as evaluated in the project CEQA Analysis. Potential environmental impacts of development under the LMSAP were analyzed and covered by the LMSAP EIR, and the EIR identified mitigation measures and Standard Conditions of Approval (SCAs) to address these potential environmental impacts. The CEQA Checklist incorporates by reference the LMSAP EIR discussion and analysis of all potential environmental impact topics; only those environmental topics that could have a potential project-level environmental impact are included. The proposed project is required to comply with applicable mitigation measures identified in the LMSAP EIR, and with City of Oakland SCAs. Because the SCAs are mandatory city requirements, the impact analysis for the proposed project assumes that they will be imposed and implemented, which the project sponsor has agreed to do or ensure as part of the proposed. This CEQA Checklist includes references to the applicable mitigation measures and SCAs and is shown in Table 1 and Table 2.

Table 1: Project Construction Standard Conditions of Approval/Mitigation Measures

SCA-AIR-1 (Standard Condition of Approval 19) Construction-Related Air Pollution Controls (Dust and Equipment Emissions)

The project applicant shall implement all of the following applicable air pollution control measures during construction of the project:
a) Water all exposed surfaces of active construction areas at least twice daily. Watering should be sufficient to prevent airborne dust from leaving the site. Increased watering frequency may be necessary whenever wind speeds exceed 15 miles per hour. Reclaimed water should be used whenever feasible.
b) Cover all trucks hauling soil, sand, and other loose materials or require all trucks to maintain at least two feet of freeboard (i.e., the minimum required space between the top of the load and the top of the trailer).

[^1]Ms. Jennifer Renk
November 11, 2016
Page 8

Table 1 (cont.): Project Construction Standard Conditions of Approval/Mitigation Measures

SCA-AIR-1 (Standard Condition of Approval 19)

Construction-Related Air Pollution Controls (Dust and Equipment Emissions)
c) All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
d) Pave all roadways, driveways, sidewalks, etc. within one month of site grading or as soon as feasible. In addition, building pads should be laid within one month of grading or as soon as feasible unless seeding or soil binders are used.
e) Enclose, cover, water twice daily, or apply (nontoxic) soil stabilizers to exposed stockpiles (dirt, sand, etc.).
f) Limit vehicle speeds on unpaved roads to 15 miles per hour.
g) Idling times on all diesel-fueled commercial vehicles over 10,000 lbs. shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to five minutes (as required by the California airborne toxics control measure Title 13, Section 2485, of the California Code of Regulations). Clear signage to this effect shall be provided for construction workers at all access points.
h) Idling times on all diesel-fueled off-road vehicles over 25 horsepower shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to five minutes and fleet operators must develop a written policy as required by Title 23, Section 2449, of the California Code of Regulations ("California Air Resources Board Off-Road Diesel Regulations").
i) All construction equipment shall be maintained and properly tuned in accordance with the manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
j) Portable equipment shall be powered by electricity if available. If electricity is not available, propane or natural gas shall be used if feasible. Diesel engines shall only be used if electricity is not available and it is not feasible to use propane or natural gas.
k) All exposed surfaces shall be watered at a frequency adequate to maintain minimum soil moisture of 12 percent. Moisture content can be verified by lab samples or moisture probe.
I) All excavation, grading, and demolition activities shall be suspended when average wind speeds exceed 20 mph .
m) Install sandbags or other erosion control measures to prevent silt runoff to public roadways.
n) Hydroseed or apply (non-toxic) soil stabilizers to inactive construction areas (previously graded areas inactive for one month or more).
o) Designate a person or persons to monitor the dust control program and to order increased watering, as necessary, to prevent transport of dust off-site. Their duties shall include holidays and weekend periods when work may not be in progress.
p) Install appropriate wind breaks (e.g., trees, fences) on the windward side(s) of actively disturbed areas of the construction site to minimize wind-blown dust. Wind breaks must have a maximum 50 percent air porosity.
q) Vegetative ground cover (e.g., fast-germinating native grass seed) shall be planted in disturbed areas as soon as possible and watered appropriately until vegetation is established.
r) Activities such as excavation, grading, and other ground-disturbing construction activities shall be phased to minimize the amount of disturbed surface area at any one time.
s) All trucks and equipment, including tires, shall be washed off prior to leaving the site.
t) Site accesses to a distance of 100 feet from the paved road shall be treated with a 6 to 12 inch compacted layer of wood chips, mulch, or gravel.
u) All equipment to be used on the construction site and subject to the requirements of Title 13, Section 2449, of the California Code of Regulations ("California Air Resources Board Off-Road Diesel Regulations") must meet emissions and performance requirements one year in advance of any fleet deadlines. Upon request by the

Ms. Jennifer Renk
November 11, 2016
Page 9

Table 1 (cont.): Project Construction Standard Conditions of Approval/Mitigation Measures

SCA-AIR-1 (Standard Condition of Approval 19)

Construction-Related Air Pollution Controls (Dust and Equipment Emissions)
City, the project applicant shall provide written documentation that fleet requirements have been met.
v) Use low VOC (i.e., ROG) coatings beyond the local requirements (i.e., BAAQMD Regulation 8, Rule 3: Architectural Coatings).
w) All construction equipment, diesel trucks, and generators shall be equipped with Best Available Control Technology for emission reductions of NO_{x} and PM .
x) Off-road heavy diesel engines shall meet the California Air Resources Board's most recent certification standard.
y) Post a publicly visible large on-site sign that includes the contact name and phone number for the project complaint manager responsible for responding to dust complaints and the telephone numbers of the City's Code Enforcement unit and the Bay Area Air Quality Management District. When contacted, the project complaint manager shall respond and take corrective action within 48 hours.

Table 2: Project Construction Standard Conditions of Approval/Mitigation Measures

SCA-AIR-2: Exposure to Air Pollution (Toxic Air Contaminants)
a) Health Risk Reduction Measures

The project applicant shall incorporate appropriate measures into the project design in order to reduce the potential health risk due to exposure to TACs.

Source: City of Oakland 2016. W12 Mixed Use Project CEQA Analysis. Website: http://www2.oaklandnet.com/oakca1 /groups/ceda/documents/report/oak059795.pdf

Specifically related to subsections SCA AIR-1 (w) and (x) above that require construction equipment and diesel trucks to be equipped with Best Available Control Technology and meet the ARB's most recent certification standard, the project must deploy construction equipment meeting Tier 4 emission standards. ${ }^{5}$ Therefore, this construction health risk assessment assumed the deployment of construction equipment that meets Tier 4 emission standards for project mitigation during construction.

Health Risk Significance Thresholds

The City of Oakland CEQA Thresholds of Significance Guidelines provides quantitative thresholds for both project-only impacts and cumulative impacts. The health risk significance thresholds adopted for this assessment are provided in Table 3 for project-level TAC emission source impact as well as the cumulative impacts of all TAC sources located within a 1,000-foot radius of the project.

[^2]Ms. Jennifer Renk
November 11, 2016
Page 10

Table 3: City of Oakland Thresholds of Significance

Metric	Individual Source Impact	Cumulative Source Impact
Cancer Risk	10 in one million (sources within a 1,000 -foot zone of influence)	100 in one million(sources within a $1,000-$-foot zone of influence)
Non-Cancer Hazard Index	1.0 (sources within a 1,000-foot zone of influence)	10.0 (sources within a 1,000-foot zone of influence)
Annual $\mathrm{PM}_{2.5}$	$0.3 \mu \mathrm{~g} / \mathrm{m}^{3}$ (sources within a 1,000- foot zone of influence)	$0.8 ~ \mu \mathrm{~g} / \mathrm{m}^{3}$ (sources within a 1,000- foot zone of influence)

Note:
$\mu \mathrm{g} / \mathrm{m}^{3}=$ microgram per cubic meter
Source: City of Oakland 2013. CEQA Thresholds of Significance Guidelines. Website: http://www2.oaklandnet.com/oakca1 /groups/ceda/documents/report/oak051200.pdf.

Health Risk Assessment and Methodology

A Health Risk Assessment (HRA) is a guide that helps to determine whether current or future exposures to a chemical or substance in the environment could affect the health of a population. In general, risk depends on the following factors:

- Identifying the TACs that may be present in the air;
- Estimating the amount of TACs released from all sources, or the source of particular concern, using air samples or emission models;
- Estimating concentrations of TACs in air in the geographic area of concern by using air dispersion models with information about emissions, source locations, weather, and other factors; and
- Estimating the concentrations of the TAC at different geographic locations and their potential health impacts.

Thus, an HRA identifies the TACs that could affect public health, identifies the sources of the TAC emissions and quantifies the emissions, estimates where the emissions are transported by prevailing meteorological conditions, and determines the potential exposures to individuals affected by the TACs.

Estimation of Project-Level Construction Emissions

The $\mathrm{PM}_{2.5}$ construction emissions were estimated using the CalEEMod Land Use Emission Model (Version 2.13.2.2). The CalEEMod model provides a consistent platform for estimating construction and operational emissions from a wide variety of land use projects and is the methodology recommended by the BAAQMD for estimating project emissions. The project's construction emissions were derived from the emission estimates obtained from ESA |Community Development ${ }^{6}$ that was used in quantifying construction emissions shown in the CEQA Analysis (Table AIR-1). Table 4 summarizes the project's

[^3]Ms. Jennifer Renk
November 11, 2016
Page 11
unmitigated and mitigated annual construction emissions of $\mathrm{PM}_{2.5}$. For purposes of the air dispersion modeling of the construction emissions, all construction emissions were assumed to be emitted in 2017.

Table 4: Project Annual DPM (as PM 2.5 Exhaust) Construction Emissions

Year	On-site DPM (as PM 2.5 Exhaust) (tons/year)	Off-site DPM ${ }^{(1)}$ (as PM 2.5 Exhaust) (tons/year)	Total PM 2.5 (tons/year)
2017	0.141	0.0005	0.142
Year	On-site DPM (as PM 2.5 Exhaust) ${ }^{(2)}$ (tons/year)	Off-site DPM (as PM 2.5 Exhaust) ${ }^{(1)}$ (tons/year)	Total PM ${ }_{2.5}$ (tons/year)
2017	0.0036	0.0005	0.0041
Note: ${ }^{(1)}$ Off-site emissions are estimated from the project site along Harrison Street to Interstate 980/880. ${ }^{(2)}$ Mitigated emissions reflect the Standard Conditions and Approvals/Mitigation Measures shown in Table 1 and deployment of off-road construction equipment meeting Tier 4 emission standards for all off-road construction equipment.			

Air Dispersion Modeling

An air dispersion model is a mathematical formulation that is used to estimate the air quality impacts at specific locations (receptors) surrounding a source of emissions given the rate of emissions and prevailing meteorological conditions. The air dispersion model applied in this assessment was the United States Environmental Protection Agency (EPA) AERMOD air dispersion model that is approved by the BAAQMD for air dispersion assessments. Specifically, the AERMOD model was used to estimate levels of TACs at sensitive receptor locations from the project's construction $\mathrm{PM}_{2.5}$ exhaust emissions. The use of the AERMOD model provides a refined methodology for estimating construction impacts by utilizing long-term measured, representative meteorological data for the project site and a representative construction schedule.

Two emission sources were used to represent the project's $\mathrm{PM}_{2.5}$ construction exhaust emissions. One source represented the generation of on-site construction DPM emissions (as $\mathrm{PM}_{2.5}$ exhaust) from the offroad construction equipment. The on-site construction emission source was assumed to be an area source that covered the entire construction area of approximately 1.9 acres. The DPM emissions were assumed to be emitted at a height of 5 meters above ground to account for the height of the equipment exhaust stack where the emissions are released to the atmosphere and the increase in the height of the emissions due to its heated exhaust. Exhibit 4 shows the locations of the project construction emission sources.

A second source was used to represent the project's construction $\mathrm{PM}_{2.5}$ from the off-site travel of construction vehicles including haul trucks, vendor trucks, and worker vehicles. The off-site vehicle emissions were represented in the AERMOD model as line volume sources with a release height of 3.7 meters for the DPM vehicles. All off-site construction vehicles were assumed for purposes of this assessment to travel from the project site along Harrison Street to Interstate 980/880. Construction was assumed to take place 8 hours per day, 5 days per week during the year 2017.

$\underset{\text { SOLUTIONBONTM }}{\text { FINTM }}$
32660012 • 11/2016 | 4_TAC_sources.cdr

Ms. Jennifer Renk
November 11, 2016
Page 13

Estimation of Cancer Risks

The BAAQMD has developed a set of guidelines ${ }^{7}$ for estimating cancer risks that provide adjustment factors that emphasize the increased sensitivities and susceptibility of young children to exposures to TACs. These adjustment factors include age-sensitivity weighting factors, age-specific daily breathing rates, and age-specific time-at-home factors. The recommend method for the estimation of cancer risk is shown in the following equations with the various cancer risk adjustment factors provided in Table 5 for sensitive/residential receptors.

$$
\text { Cancer Risk = C CPM } \times \text { Inhalation Exposure Factor) }
$$

Where:

Cancer Risk = Total individual excess cancer risk defined as the cancer risk a hypothetical individual faces if exposed to carcinogenic emissions from a particular source for specified exposure durations; this risk is defined as an excess risk because it is above and beyond the background cancer risk to the population; cancer risk is expressed in terms of risk per million exposed individuals.
$C_{\text {DPM }}=$ Period average DPM air concentration calculated from the air dispersion model in $\mu \mathrm{g} / \mathrm{m}^{3}$

Inhalation is the most important exposure pathway to impact human health from DPM and the inhalation exposure factor is defined as follows:
Inhalation Exposure Factor = CPF x EF x ED AAF/AT

Where:
CPF = Inhalation cancer potency factor for the TAC: $1.1(\mathrm{mg} / \mathrm{kg} \text {-day) })^{-1}$ for DPM
$\mathrm{EF}=$ Exposure frequency (days/year)
$E D=$ Exposure duration (years)
AAF = set of age-specific adjustment factors that include age sensitivity factors (ASF), daily breathing rates (DBR), and time at home factors (TAH) - see Table 5.
AT = Averaging time period over which exposure is averaged (days)

[^4]Ms. Jennifer Renk
November 11, 2016
Page 14

Table 5: Exposure Assumptions for Cancer Risk

Receptor Type	Exposure Frequency		Exposure Duration (years)	Age Sensitivity Factors (ASF)	Time at Home Factor (TAH) (\%)	Daily Breathing Rate (DBR) ${ }^{(1)}$ (L/kg-day)
	Hours/day	Days/year				
Sensitive/Residential-Infant						
$3{ }^{\text {rd }}$ Trimester	24	350	0.25	10	85	361
0-1 year	24	350	1	10	85	1,090
Sensitive Receptor-Child						
3 to 16 years	24	350	1	3	73	572
Sensitive Receptor-Adult						
> 16 years	24	350	1	1	72	261
Notes: ${ }^{(1)}$ The daily breathing rates recommended by the BAAQMD for sensitive/residential receptors assume the $95^{\text {th }}$ percentile breathing rates for all individuals less than 2 years of age and $80^{\text {th }}$ breathing rates for all older individuals. (L/kg-day) = liters per kilogram body weight per day Source: BAAQMD 2016. Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. Website: http://www.baaqmd.gov /~/media/files/planning-and-research/rules-and-regs/workshops/2016/reg-2-5/hra-guidelines_clean_jan_2016-pdf.pdf?la=en>						

Estimation of Non-Cancer Hazards

An evaluation of the potential non-cancer effects of chronic chemical exposures was also conducted. Adverse health effects are evaluated by comparing the annual receptor concentration of each chemical compound with the appropriate reference exposure limit (REL). Available RELs promulgated by the California Office of Environmental health Hazards Assessment (OEHHA) were considered in the assessment.

To quantify non-carcinogenic impacts, the hazard index approach was used.

$$
\mathrm{HI}=\mathrm{C}_{\mathrm{ann}} / \mathrm{REL}
$$

Where:
$\mathrm{HI}=$ chronic hazard index
$C_{n n}=$ annual average concentration of TAC as derived from the air dispersion model ($\mu \mathrm{g} / \mathrm{m}^{3}$)
REL = reference exposure level above which a significant impact is assumed to occur ($\mu \mathrm{g} / \mathrm{m}^{3}$)

The hazard index assumes that chronic sub-threshold exposures adversely affect a specific organ or organ system (toxicological endpoint). For each discrete chemical exposure, target organs presented in regulatory guidance were used. To calculate the hazard index, each chemical concentration or dose is divided by the appropriate toxicity reference exposure level. For compounds affecting the same toxicological endpoint, this ratio is summed. Where the total equals or exceeds 1 , a health hazard is presumed to exist. For purposes of this assessment, the TAC of concern is DPM for which the OEHHA has

Ms. Jennifer Renk
November 11, 2016
Page 15
defined a REL for DPM of $5 \mu \mathrm{~g} / \mathrm{m}^{3}$. The principal toxicological endpoint assumed in this assessment was through inhalation.

Estimation of $\mathrm{PM}_{2.5}$ Hazards

The City of Oakland has included a significance threshold for $\mathrm{PM}_{2.5}$, due to recent studies that show health impacts from exposure to this pollutant. The construction emissions of $\mathrm{PM}_{2.5}$ incorporated into this assessment included DPM (as PM ${ }_{2.5}$ exhaust).

Estimates of Health Risks and Hazards from Project Construction

The estimated health and hazard impacts at the maximum impacted sensitive receptor from the project's construction emissions are provided in Table 6 prior to the application of mitigation. The maximum impacted sensitive receptor (MIR) was found at an existing residences located approximately 25 meters (82 feet north of the project) at the intersection of $12^{\text {th }}$ Street and Harrison Street. As noted from Table 6, prior to the application of mitigation, the project's construction DPM emissions would exceed the City of Oakland's cancer risk threshold of significance at the maximum impacted sensitive infant receptor and for the annual $\mathrm{PM}_{2.5}$ hazard and thus would result in a significant impact to nearby sensitive receptors.

Table 6: Estimated Health Risks and Hazards: Project Construction—No Mitigation

Source	Cancer Risk (risk per million)	Chronic Non-Cancer Hazard Index ${ }^{(2)}$	Annual PM 2.5 Concentration ($\mu \mathrm{g} / \mathrm{m}^{3}$)
Risks and Hazards at the Maximum Impacted Sensitive Receptor (MIR): Infant ${ }^{(1)}$	60.5	0.08	0.40
Risks and Hazards at the Maximum Impacted Sensitive Receptor (MIR): Child ${ }^{(1)}$	7.6	0.08	0.40
Risks and Hazards at the Maximum Impacted Sensitive Receptor (MIR): Adult ${ }^{(1)}$	1.1	0.03	0.40
City of Oakland Thresholds of Significance	10	1	0.30
Exceeds Threshold?	Yes (for the Infant Sensitive Receptor)	No	Yes

Notes:
${ }^{(1)}$ Maximum impacted sensitive receptor is a residence located approximately 82 feet at the northeast corner of $12^{\text {th }}$ Street and Harrison Street.
${ }^{(2)}$ Chronic non-cancer hazard index was estimated by dividing the annual DPM concentration (as PM 2.5 exhaust) by the REL of $5 \mu \mathrm{~g} / \mathrm{m}^{3}$.
Source: Attachment A.

Table 7 summarizes the project's construction impacts after the application of the standard conditions of approval and mitigation identified above in Table 1 and the use of Tier 4 off-road construction equipment. As noted in Table 7, the project's construction emissions would not exceed any of the City of

Ms. Jennifer Renk
November 11, 2016
Page 16

Oakland's thresholds of significance after application of mitigation at the MIR and, therefore, would represent a less than significant impact on a project level during construction.

Table 7: Estimated Health Risks and Hazards: Project Construction—With Mitigation

Source	Cancer Risk (risk per million)	Chronic Non-Cancer Hazard Index $^{(2)}$	Annual PM $_{2.5}$ Concentration $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
Risks and Hazards at the Maximum Impacted Sensitive Receptor (MIR): Infant $^{(1)}$	1.6	0.002	0.01
City of Oakland Thresholds of Significance	10	1	0.3
Exceeds Threshold?	No	No	No

Notes:
${ }^{(1)}$ Maximum impacted sensitive receptor is a residence located approximately 82 feet at the northeast corner of $12^{\text {th }}$ Street and Harrison Street.
${ }^{(2)}$ Chronic non-cancer hazard index was estimated by dividing the annual DPM concentration (as PM 2.5 exhaust) by the REL for DPM of $5 \mu \mathrm{~g} / \mathrm{m}^{3}$.
Source: Attachment B.

Estimates of Cumulative Health Risks and Hazards

As noted above, the community risk from the project's construction emissions would not exceed the health risk significance thresholds after application of mitigation and standard conditions of approval. The BAAQMD recommends assessing the potential cumulative impacts from sources of TACs within 1,000 feet of a project. To assess the impacts of nearby sources of TACs in combination with the project's construction impacts on nearby sensitive receptors, a screening-level analysis was conducted as part of the CEQA Analysis for the project. This screening analysis is contained in Criterion $2 b$ of the CEQA Analysis. The screening analysis applied a series of screening tools developed by the BAAQMD to provide conservative estimates of how much existing TAC sources would contribute to cancer risk, chronic hazard index (HI), and/or fine particulate matter ($\mathrm{PM}_{2.5}$) concentrations in a community. The individual health risks associated with each source are summed to find the cumulative impact at the location of the MIR. Based on proximity to the project site, the MIR was assumed to be a resident located at the northeast corner of $12^{\text {th }}$ Street and Harrison Street, approximately 82 feet north of the project site (see Exhibit 3)

The cumulative health risk assessment contained in the CEQA Analysis, identified 10 existing stationary sources of TAC emissions within 1,000 feet of the MIR (Table 8 and Exhibit 5). An additional five stationary sources on or adjacent to the 1,000-foot radius were added to the list of cumulative TAC emission sources for this assessment. Preliminary health risk screening values at the MIR from the stationary sources were determined using the BAAQMD's Stationary Source Screening Analysis Tool. The BAAQMD's Diesel Internal Combustion Engine Distance Multiplier Tool was used to refine the screening values associated with five of the 15 stationary sources that operate diesel engines to represent the attenuated health risks that can be expected with increasing distance from the source of emissions.

Ms. Jennifer Renk
November 11, 2016
Page 18

One source, Facility ID\#378 is a dry cleaning business that no longer uses perchloroethylene (as verified in the latest BAAQMD air toxic inventory) and hence no longer represents a source of localized TAC contributions.

Note that the cancer risks estimated from the BAAQMD assessment tool (permitted stationary sources) are based on an older set of exposure parameters that do not reflect the current BAAQMD cancer risk parameters dealing with daily breathing rates, time at home factors, and exposure duration. The cancer risks estimated from the BAAQMD's assessment tools for these TAC emission sources, therefore, were increased by a value of 1.12 to incorporate the BAAQMD's newest cancer risk guidance. The scaling factor of 1.12 represents the ratio of the cancer risk estimated with the current BAAQMD cancer risk guidance to the previous BAAQMD cancer risk guidance (see Attachment C).

As noted from Table 8 the cumulative risks from the project construction and from other sources of TAC emissions within 1,000 feet of the project would not expose nearby sensitive receptors to cancer risks or hazard levels that exceed the BAAQMD cumulative health risk thresholds of significance. Therefore, the construction of the project would not result in project-level or cumulative significant health risk impacts.

Table 8: Summary of Cumulative Health Risks at the MIR

Source	Address	Cancer Risk (per million)	Chronic HI	$\begin{gathered} \mathrm{PM}_{2.5} \\ \text { Concentration } \\ \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
Project Construction ${ }^{(1)}$	Project Site	1.6	0.002	0.01
Existing Stationary TAC Emission Source ${ }^{(2)}$ S				
Hotel Oakland (\#19039) Mark Bosuk Esq. (\#13071) Ideal Cleaners (\#378) Alameda County GSA (G7875) Aqua Science (\#18100) China Town 76 Unocal (\#G11947) Trans Pacific Centre (\#14837) East Bay Municipal District $(\# 13728)^{(3)}$ Paetec (\#18912) Alameda County GSA (\#14742) Cushman \& Wakefield (\#17739)GGG FEMA (\#16836) AEI Consultants (\#11789) Rhino Gas (\#584) The Clorox Company (\#13308)	$27013^{\text {th }}$ Street 1432 Harrison Street $32214^{\text {th }}$ Street $16513^{\text {th }}$ Street $2508^{\text {th }}$ Street 800 Harrison Street 1000 Broadway $37511^{\text {th }}$ Street $42714^{\text {th }}$ Street 39313 Street Jack London Square 1111 Broadway $2458^{\text {th }}$ Street $2458^{\text {th }}$ Street 1221 Broadway	8.4 0.0 0.0 0.1 0.0 0.3 8.6 20.0 0.1 1.4 1.3 26.5 No Data 1.3 0.1	$\begin{gathered} 0.003 \\ 0.0 \\ 0.0 \\ <0.001 \\ 0.0 \\ <0.001 \\ 0.003 \\ 0.012 \\ <0.001 \\ <0.001 \\ 0.011 \\ 0.008 \\ \text { No Data } \\ 0.002 \\ 0.0 \end{gathered}$	$\begin{gathered} 0.002 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.002 \\ 0.002 \\ <0.001 \\ <0.001 \\ 0.007 \\ 0.042 \end{gathered}$ No Data No Data 0.01
	Cumulative Impacts	69.7	0.045	0.077
City of Oakland Significance Criteria		100	10	0.8
Potentially Significant Impact?		No	No	No

Ms. Jennifer Renk
November 11, 2016
Page 19

Table 8 (cont.): Summary of Cumulative Health Risks at the MIR

	Source	Address	Cancer Risk (per million)	Chronic HI	$\begin{gathered} \mathrm{PM}_{2.5} \\ \text { Concentration } \\ \left(\mu \mathrm{g} / \mathrm{m}^{3}\right) \end{gathered}$
Notes:					
${ }^{(1)}$ Project construction health impacts after application of mitigation					
${ }^{(2)}$ Cancer risk impacts from the existing stationary TAC emission sources were multiplied by a factor of 1.12 to account for the differences in cancer risks between the current BAAQMD cancer risk estimation guidance and the previous cancer risk estimation guidance.					
${ }^{3)}$ Health risks from this stationary source were estimated using the BAAQMD Risk and Hazards Calculator and TAC emission information from the BAAQMD (Alison Kirk, personal communication, November 9, 2016.					

Attachment A: Estimates of Construction Diesel PM 2.5 Emissions and Health Risk Impacts Without Mitigation

Attachment A: Estimates of Construction Diesel PM ${ }_{2.5}$ Emissions and Health Risk Impacts No Mitigation

CalEEMod Model Output 1
Construction DPM and Health Risks (No Mitigation) 18
AERMOD Model Output for Construction 26
CalEEMod Version: CalEEMod.2013.2.2

1.1 Land Usage						
Land Uses	Size		Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking Structure	391.00		Space	0.00	108,000.00	0
High Turnover (Sit Down Restaurant)	3.50		1000saft	0.00	3,500.00	0
Apartments High Rise	510.00		Dwelling Unit	1.72	510,000.00	1051
Striow Mailil	14.70		1000saft	0.00	14,700.00	0
1.2 Other Project Characteristics						
Urbanization Urban	Wind Speed (m / s)	2.2	Precipitation Freq	s) 63		
Climate Zone 5			Operational Year	2018		
Utility Company Pacific Gas \& Electric Company						
CO2 Intensity (Ib/MWhr)	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006		

1.3 User Entered Comments \& Non-Default Data

Project Characteristics - Adjust CO2 factor to reflect PG\&E 5-year rolling average published 11/2015
Land Use - Adjust acreage to match project site. Adjust population consistytyent with Oakland analysis 2.06 persons/du Construction Phase Demolition -
Architectural Coating - Per SCA 19v, applicant must use paint with VOC content less than current requirements. ADhsutted interior to SCAQMD V̇ehicle Tr Trips - Adjust trip rates to match tranportation analysis.
Woodstoves - Assume no woodstoves. Assume default number of fireplaces but all gas fired.
Energy Use - Adjust T24 energy to refklect 2013 T24.
Water And Wastewater - Assume all wastewater treatmenrt aerobic at EBMUD plant. No septic or lagoons.
Construction Off-road Equipment Mitigation - Tier IV assumed as mitigation consistent with SCA AIR-1 (x and w)

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Interior	100.00	50.00
tblArchitecturalCoating	EF_Residential_Interior	100.00	50.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMititigation	NumberOfEquipmentMitigated	0.00	1.00
tbIConstEquipMititigation	NumberOfEquipmentMitiowated	0.00	1.00
tbIConstEquipMititigation	NumberofEquipmentMitiowated	0.00	1.00
tbIConstEquipMititigation	NumberofEquipmentMisitigated	0.00	1.00
tblConstEquipMititiation	NumberofEquipmentMitigated	0.00	1.00
tblConstEquipMititigation	NumberofEquipmentMitiowated	0.00	2.00
tblConstEquipMititigation	NumberofEquipmentMitivigated	0.00	1.00
tblConstEquipMititigation	NumberOfEquipmentMitigated	0.00	1.00
	NumberOfEquipmentMitiowigated	0.00	1.00
	NumberOf=quivipmentMititigated	0.00	3.00
tibliconstequipmilitiowation	NumberOf=9quivivmentMilitigated	0.00	7.00
tibiconstequipMilitiowation	NumberOf=9quiviomentMilitigated	0.00	3.00
tibiconstequipMivitiowaiow	Tier	No Change	Tier 4 Finalial
tibiconstequipMilitiowation	Tier	No Change	Tier 4 Fivisal
tblConstEquipMilitigation	Tier	No Change	Tier 4 Finail
tblConstEquipMilitigation	Tier	No Change	Tier 4 Finail
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMilitigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMititigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipMititigation	Tier	No Change	Tier 4 Final
tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblConstEquipipMititigation	Tier	No Change	Tierer 4 Final

Attachment A
W12 Mixed Use Project

tblConstEquipMitigation	Tier	No Change	Tier 4 Final
tblEnergy ${ }^{\text {ase }}$	T24E	312.05	234.04
tblEnergy ${ }^{\text {ase }}$	T24E	3.92	2.94
tblEnergy ${ }^{\text {ase }}$	T24E	3.26	2.45
tblEnergy ${ }^{\text {ase }}$	T24E	2.74	2.06
tblEnergy ${ }^{\text {ase }}$	T24NG	7,191.67	5,393.75
tblEnergy ${ }^{\text {ase }}$	T24NG	41.99	31.49
tbiEnergy ${ }^{\text {ase }}$	T24NG	4.10	3.08
tblFireplaces	Numbergas	280.50	351.90
tblFireplaces	Numberwood	71.40	0.00
tblGrading	MaterialExported	0.00	55,500.00
tblLanduse	LanduseSquareFeet	156,400.00	108,000.00
tbiLanduse	LotAcreage	3.52	0.00
tblLanduse	LotAcreage	0.08	0.00
tblianduse	LotAcreage	8.23	1.72
tblLandUse	LotAcreage	0.34	0.00
tbiLanduse	Population	1,459.00	1,051.00
tbliprojectCharacteristics	CO2IntensityFactor	641.35	457
tbliprojectCharacteristics	Operationalyear	2014	2018
tolvehicle Trips	ST_TR	7.16	3.56
tbivehicleTrips	ST_TR	158.37	65.79
tbivehicleTrips	ST_TR	42.04	19.99
tbivehicleTrips	SU_TR	6.07	3.02
tbivehicleTrips	SU_TR	131.84	50.31
tbivehicleTrips	SU_TR	20.43	9.71
tolvenicleTrips	WD_TR	6.59	3.28
tbivenicleTrips	WD_TR	127.15	62.72
tbivehicleTrips	WD_TR	44.32	21.07
tblwater	AerobicPercent	87.46	100.00
tblwater	AerobicPercent	87.46	100.00
tolwater	AerobicPercent	87.46	100.00
tblwater	AerobicPeercent	87.46	100.00

Attachment A
W12 Mixed Use Project

2.0 Emissions Summary
2.1 Overall Construction
Unmitigated Construction

Mitigated Construction

3.0 Construction Detail

Acres of Grading (Site Preparation Phase): 1
Acres of Grading (Grading Phase): 1.5
Acres of Paving: 0
OffRoad Equipment

Residential Indoor: 1,032,750; Residential Outdoor: 344,250; Non-Residential Indoor: 189,300; Non-Residential Outdoor: 63,100
Attachment A
W12 Mixed Use Project

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	357.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	8.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	6,938.00	12.40	7.30	20.00	LD_M ${ }^{\text {a/vix }}$	HDT_M ${ }^{\text {axix }}$	HHDT
Building Construction	7	419.00	75.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_M Mix	HHDT
Paving	5	13.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	84.00	0.00	0.00	12.40	7.30	20.00	LD_Mix	HDT_M Mix	HHDT

3.1 Mitigation Measures Construction

Use Cleaner Engines for Construction Equipment
Water Exposed Area
Water Unpaved Roads
Attachment A
W12 Mixed Use Project
ATTACHMENT A
Reduce Vehicle Speed on Unpaved Roads
Clean Paved Roads
3.2 Demolition - 2017
Unmitigated Construction On-Site

Unmitigated Construction Off-Site

	ROG	NOX	co	SO2	$\begin{aligned} & \text { Fugitive } \\ & \text { PM10 } \end{aligned}$	$\begin{array}{\|l} \hline \text { Exhaust } \\ \text { PM10 } \end{array}$	$\begin{gathered} \hline \text { PM10 } \\ \text { Total } \end{gathered}$	$\begin{aligned} & \text { Fugitive } \\ & \text { PM2.5 } \end{aligned}$	$\begin{aligned} & \text { Exhaust } \\ & \text { PM2.5 } \end{aligned}$	$\begin{gathered} \hline \text { PM2.5 } \\ \text { Total } \end{gathered}$	Bio-CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tonslyr										MT/yr					
Hauling	$\begin{gathered} 3.8200 \mathrm{e} \\ 003 \end{gathered}$	0.0480	0.0425	$\begin{gathered} 1.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} \frac{3.0100 e-}{003} \\ 0 \end{gathered}$	$\begin{gathered} 6.2000 e- \\ 004 \end{gathered}$	$\begin{gathered} 3.6300 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 8.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 5.7000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 1.4000 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	12.1066	12.1066	$\begin{gathered} 9.0000 e^{-} \\ 005 \end{gathered}$	0.0000	12.1084
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00000	0.0000
Worker	$\begin{gathered} 4.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 6.6000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 6.3100 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.0000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 1.18000- \\ 003 \end{gathered}$	$\begin{gathered} 1.00000- \\ 005 \end{gathered}$	$\begin{aligned} & 1.19000 e^{-} \\ & 003 \end{aligned}$	$\begin{gathered} 3.1000 \mathrm{e} \\ 004 \end{gathered}$	$\begin{gathered} 1.00000 \mathrm{e}- \\ 005 \end{gathered}$	$\begin{gathered} 3.2000 \mathrm{e} \\ 004 \end{gathered}$	0.0000	1.0324	1.0324	$\begin{gathered} 6.0000 \mathrm{e}- \\ 005 \end{gathered}$	0.0000	1.0336
Total	$\begin{gathered} 4.2600 \mathrm{e}- \\ 003 \end{gathered}$	0.0487	0.0488	$\begin{gathered} 1.4000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{array}{\|c} \hline 4.1900 \mathrm{e}- \\ 003 \end{array}$	$\begin{gathered} \hline 6.3000 \mathrm{e}- \\ 004 \end{gathered}$	$\begin{gathered} 4.8200 \mathrm{e}- \\ 003 \end{gathered}$	$\begin{gathered} 1.1400 \mathrm{e}- \\ 003 \end{gathered}$	5.8000e- 004	$\begin{gathered} 1.7200 \mathrm{e}- \\ 003 \end{gathered}$	0.0000	13.1390	13.1390	$\begin{gathered} 1.5000 \mathrm{e}- \\ 004 \end{gathered}$	0.0000	13.1420

Mitigated Construction On-Site
Attachment A
W12 Mixed Use Project
ATTACHMENT A

Attachment A
W12 Mixed Use Project

Mitigated Construction On-Site

Mitigated Construction Off-Site
Attachment A
W12 Mixed Use Project

ATTACHMENT A

Attachment A
W12 Mixed Use Project

Mitigated Construction On-Site

Mitigated Construction Off-Site

3.5 Building Construction - 2017 Unmitigated Construction On-Site

Attachment A
W12 Mixed Use Project

ATTACHMENT A

Mitigated Construction On-Site

Attachment A
W12 Mixed Use Project

Mitigated Construction Off-Site

Unmitigated Construction Off-Site
Attachment A
W12 Mixed Use Project

ATTACHMENT A

Mitigated Construction Off-Site

$\underset{\substack{\text { Atacarment } A \\ W 12 \text { Mxed } \\ \text { ses Projed }}}{ }$

3.7 Architectural Coating - 2017
Unmitigated Construction On-Site

Unmitigated Construction Off-Site

Mitigated Construction On-Site
Attachment A
W12 Mixed Use Project

ATTACHMENT A

Attachment A
W12 Mixed Use Project

ATTACHMENT A

Attachment A
W12 Mixed Use Project

ATTACHMENT A

W12 Mixed Use Project: Oakland

W12 Mixed Use Project: Oakland

W12 Mixed Use Project: Oakland
No Mitigation
Estimated Cancer Risks from Construction DPM - Infant Receptors
Cancer Unit Risk Factor: \quad 3rd Trimester Year 1 (2017)
$\begin{array}{cc}(\mathrm{ug} / \mathrm{m} 3)^{-1} & (\mathrm{ug} / \mathrm{m} 3)^{-1} \\ 11.6 & 139.6\end{array}$
3rd Trimester Year 1 (2017)
Total
Cancer Risk
(/million) 60.51444 9.53028
5.61554 10.51762 5.48499
1.45976
W12 Mixed Use Project: Oakland

$$
\begin{aligned}
& \text { W12 Mixed Use Project: Oakland No Mitigation } \\
& \text { Estimated Cancer Risks from Construction DPM - Child Receptor } \\
& \\
& \text { Cancer Unit Risk Factor: } \begin{array}{c}
\text { Year } 1(2017) \\
\\
\\
\\
\\
\\
\\
\hline \mathrm{g} / \mathrm{m} 3)^{-1} \\
18.9
\end{array}
\end{aligned}
$$

$$
\begin{array}{ccc}
\mathbf{X} & \begin{array}{c}
\text { Y } \\
(\mathrm{m})
\end{array} & \begin{array}{c}
\text { Year 1 (2017) } \\
\text { Cancer riskRisk } \\
(/ \text { million })
\end{array} \\
564422.54 & 4184053.48 & 7.55625 \\
564249.79 & 4184051.74 & 1.19002 \\
564355.29 & 4184176.96 & 0.70119 \\
564460.22 & 4184129.42 & 1.31330 \\
564471.81 & 4183890.01 & 0.68489 \\
564328.93 & 4183850.83 & 0.18228
\end{array}
$$

W12 Mixed Use Project: Oakland

Cancer Risk Impacts from Construction at the Maximum Impacted Sensitive Receptor - Adult					
Cancer Potency Factor:		$\left(\mathrm{mg} / \mathrm{kg}\right.$-day) ${ }^{-1}$			
Exposure Frequency	350	days/year			
Averaging Period	25550	days			
DPM		Daily Breathing	Time At	Exposure	Unit
Concentration	Age Sensitivty	Rate	Home	Duration	Cancer Risk
Year (ug/m3)	Factor	(L/kg-day)	Factor	(years)	(/million)
1	1	261	0.72	1	2.8

No Mitigation
W12 Mixed Use Project: Oakland
Estimated Cancer Risks from Construction DPM - Adult Receptors

Attachment A
W12 Mixed Use Project

ATTACHMENT A

No Mitigation
Estimated Chronic Non-Cancer Hazard Index from Construction DPM
Reference Exposure Level for DPM: $\quad 5 \mathrm{ug} / \mathrm{m} 3$
$\begin{array}{ccc}\mathbf{X} & \mathbf{Y} & \begin{array}{c}\text { Year 1 (2017) } \\ \text { Chronic Non-Cancer } \\ \text { Hazard Index }\end{array} \\ \mathbf{(m)} & \mathbf{(m)} & 0.08006 \\ 564422.54 & 4184053.48 & 0.01261 \\ 564249.79 & 4184051.74 & 0.00743 \\ 564355.29 & 4184176.96 & 0.01392 \\ 564460.22 & 4184129.42 & 0.00726 \\ 564471.81 & 4183890.01 & 0.00193 \\ 564328.93 & 4183850.83 & \end{array}$

```
*** AERMOD - VERSION 15181*** *** C:\MBAIW12\AERMODIW12_ConstIW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** 13:50:3
PAGE }
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** MODEL SETUP OPTIONS SUMMARY ***
**Model Is Setup For Calculation of Average CONCentration Values.
-- DEPOSITION LOGIC --
**NO GAS DEPOSITION Data Provided.
**NO PARTICLE DEPOSITION Data Provided.
**Model Uses NO DRY DEPLETION. DRYDPLT = F
**Model Uses NO WET DEPLETION. WETDPLT = F
**Model Uses URBAN Dispersion Algorithm for the SBL for }26\mathrm{ Source(s),
    for Total of 1 Urban Area(s):
    Urban Population = 406000.0 ; Urban Roughness Length = 1.000 m
**Model Allows User-Specified Options:
    1. Stack-tip Downwash.
    2. Model Accounts for ELEVated Terrain Effects.
    3. Use Calms Processing Routine.
    4. Use Missing Data Processing Routine.
    5. No Exponential Decay.
    6. Urban Roughness Length of 1.0 Meter Used.
**Other Options Specified:
    FASTALL - Use effective sigma-y to optimize meander for
        POINT and VOLUME sources, and hybrid approach
        to optimize AREA sources (formerly TOXICS option)
    CCVR_Sub - Meteorological data includes CCVR substitutions
    TEMP_Sub - Meteorological data includes TEMP substitutions
**Model Assumes No FLAGPOLE Receptor Heights.
**The User Specified a Pollutant Type of: UNITEMIS
**Model Calculates PERIOD Averages Only
**This Run Includes: }26\mathrm{ Source(s); 2 Source Group(s); and }384\mathrm{ Receptor(s)
\begin{tabular}{ll} 
with: & 0 POINT(s), including \\
& 0 POINTCAP(s) and 0 POINTHOR(s) \\
and: & 25 VOLUME source(s) \\
and: & 1 AREA type source(s) \\
and: & 0 LINE source(s) \\
and: & 0 OPENPIT source(s)
\end{tabular}
**Model Set To Continue RUNning After the Setup Testing.
**The AERMET Input Meteorological Data Version Date: }1413
**Output Options Selected:
    Model Outputs Tables of PERIOD Averages by Receptor
    Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword)
    Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword)
**NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours
                                    m for Missing Hours
                                    b for Both Calm and Missing Hours
**Misc. Inputs: Base Elev. for Pot. Temp. Profile (m MSL) = 10.00; Decay Coef. = 0.000 ; Rot. Angle = 0.0
    Emission Units = GRAMS/SEC ; Emission Rate Unit Factor = 0.10000E+07
    Output Units = MICROGRAMS/M**3
```


*** VOLUME SOURCE DATA ***

*** AREAPOLY SOURCE DATA ***
NUMBER EMISSION RATE LOCATION OF AREA BASE RELEASE NUMBER INIT. URBAN EMISSION RATE SOURCE PART. (GRAMS/SEC X Y ELEV. HEIGHT OF VERTS. SZ SOURCE SCALAR VARY ID CATS. /METER**2) (METERS) (METERS) (METERS) (METERS) (METERS) BY

AREAEXH $\quad 0 \quad 0.10000 \mathrm{E}-04564298.64184081 .3$ 12.0 $\quad 5.00 \quad 6 \quad 0.00$ YES HRDOW

+ *** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc *** 11/10/16
${ }^{* * *}$ AERMET - VERSION $141344^{* * *}$ *** - 13:50:35
PAGE 4
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** SOURCE IDs DEFINING SOURCE GROUPS ***
SRCGROUP ID
SOURCE IDs

AREAEXH AREAEXH

Page 2

```
                                    W12 Const
OFFEXH L0000001 ,L0000002 ,L0000003 ,L0000004 ,L0000005 ,L0000006 ,L0000007 ,L0000008 ,
L0000009 , L0000010 , L0000011 , L0000012 , L0000013 , L0000014 , L0000015 , L0000016 ,
L0000017 , L0000018 , L0000019 , L0000020 , L0000021 , L0000022 , L0000023 , L0000024 ,
    L0000025
ᄋ *** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstIW12_Const.isc ***}13.50.35 *** 11/10/16
*** AERMET - VERSION 14134*** *** PAGE 5
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** SOURCE IDs DEFINED AS URBAN SOURCES ***
```

URBAN ID URBAN POP SOURCE IDs

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = AREAEXH ; SOURCE TYPE = AREAPOLY:
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
```

HOUR SCALAR

DAY OF WEEK = WEEKDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .1000 \mathrm{E}+01$
$\begin{array}{llllllllllll}9.1000 E+01 & 10.1000 E+01 & 11.1000 E+01 & 12.1000 E+01 & 13 & .1000 \mathrm{E}+01 & 14 & .1000 \mathrm{E}+01 & 15 & .1000 \mathrm{E}+01 & 16 & .0000 \mathrm{E}+00\end{array}$
$\begin{array}{llllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}$ DAY OF WEEK = SATURDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00$

$\begin{array}{lllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00$

ㅇ $^{* * *}$ AERMOD - VERSION $15181^{* * *} * * *$ C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc \quad 11/10/16
*** AERMET - VERSION 14134 *** *** $13: 50: 35$
PAGE 7
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = L0000001 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
```

```
                                    DAY OF WEEK = WEEKDAY
    1.0000E+00 2.0000E+00 3.0000E+00 4..0000E+00 5.0000E+00 1.0.0000E+00 7 7 .0000E+00 8 . 1000E+01
    9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 12 13.1000E+01 14.1000E+01 15 15.1000E+01 16 .0000E+00
    17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
                            DAY OF WEEK = SATURDAY
    .0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5 5.0000E+00 6.0000E+00 7.0000E+00 8 .0000E+00
    9 .0000E+00 10 .0000E+00 11 .0000E+00 12.0000E+00 13.0000E+00 14 .0000E+00 15 15 .0000E+00 16 .0000E+00
17.0000E+00 18.0000E+00 19.0000E+00 20.0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
    DAY OF WEEK = SUNDAY
```

```
            W12 Const
    1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
    9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 13.0000E +00 14 14.0000E+00 15 .0000E+00 16 .0000E+00
17.0000E+00 18 .0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22.0000E+00 23 .0000E+00 24 .0000E+00
& *** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstIW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** ***
*** 13:50:35
PAGE }
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
```

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = L0000002 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
```


DAY OF WEEK = WEEKDAY

```
\(1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01\)
```



```
\(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\) DAY OF WEEK = SATURDAY
\(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00\)
```



```
\(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00\) DAY OF WEEK = SUNDAY
\(.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\) \(9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{lllllll}14 & 12.0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}\)
```



``` \(\dot{+}_{* * *}^{* * *}\) AERMOD - VERSION \(15181^{* * * * * * *}\) C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc \(\quad\) **** \(11 / 10 / 16\) \({ }^{* * *}\) AERMET - VERSION 14134 *** *** 13:50:35
```

**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000003 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR

```
                                    DAY OF WEEK = WEEKDAY
    1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 . 1000E+01
    9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13 13.1000E+01 14.1000E+01 15 15 .1000E+01 16 .0000E+00
17.0000E+00 18.0000E +00 19.0000E+00 20.0000E+00 21 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
                        DAY OF WEEK = SATURDAY
    1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
    9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13.0000E+00 14 14 .0000E+00 15 .0000E+00 16 .0000E+00
17.0000E+00 18 18 .0000E+00 19 19 .0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
                        DAY OF WEEK = SUNDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13.0000E+00 14 .0000E+00 15 .0000E+00 16 16 .0000E+00
17.0000E+00 18.0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22.0000E+00 23 .0000E+00 24 24 .0000E+00
+ *** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** 13:50:35
PAGE 10
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
```

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
SOURCE ID = L0000004 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

DAY OF WEEK = WEEKDAY
$1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .1000 \mathrm{E}+01$
$9.1000 \mathrm{E}+01 \quad 10.1000 \mathrm{E}+01 \quad 11.1000 \mathrm{E}+01 \quad 12.1000 \mathrm{E}+01 \quad 13.1000 \mathrm{E}+01 \quad 14.1000 \mathrm{E}+01 \quad 15.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00$
$\begin{array}{lllllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}$ DAY OF WEEK = SATURDAY
$\begin{array}{llllllllllllllllllll}1.0000 \mathrm{E}+00 & 2.0000 \mathrm{E}+00 & 3.0000 \mathrm{E}+00 & 4 & .0000 \mathrm{E}+00 & 5.0000 \mathrm{E}+00 & 6 & .0000 \mathrm{E}+00 & 7 & .0000 \mathrm{E}+00 & 8 & .0000 \mathrm{E}+00\end{array}$

$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+00 \quad 20.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00$

```
                                    W12 Const
    9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 .0000E+00 14 14.0000E+00 15 15 .0000E+00 16 .0000E+00
17.0000E+00 18 .0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
*** AERMET - VERSION 14134*** *** 13:50:35
PAGE 11
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
```

```
SOURCE ID = L0000005 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
```

DAY OF WEEK = WEEKDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .1000 \mathrm{E}+01$
$9.1000 \mathrm{E}+01 \quad 10.1000 \mathrm{E}+01 \quad 11.1000 \mathrm{E}+01 \quad 12.1000 \mathrm{E}+0113.1000 \mathrm{E}+01 \quad 14.1000 \mathrm{E}+01 \quad 15.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00$
$17.0000 \mathrm{E}+00 \quad 18.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+00 \quad 20.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00$
DAY OF WEEK = SATURDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00$
$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+00 \begin{array}{lllllllll} & 13 & 13 & .0000 \mathrm{E}+00 & 14 & .0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16\end{array}$. $0000 \mathrm{E}+00$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020$.0000E+00 $21.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023$.0000E+00 24 . $0000 \mathrm{E}+00$
DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00$

$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020 \quad .0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00$
ㅇ** AERMOD - VERSION 15181*** *** C:IMBAIW12IAERMODIW12_ConstlW12 Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** $13: 50: 35$
PAGE 12
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = L0000006 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
```

DAY OF WEEK = WEEKDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .1000 \mathrm{E}+01$

$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00$ DAY OF WEEK = SATURDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00$

$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+00 \quad 20.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+003.0000 \mathrm{E}+004.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8$.0000E+00
$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{lllllllll} & 14 & 12000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$

우** AERMOD - VERSION $15181^{* * *}$ *** C:IMBAIW12VAERMODIW12_ConstlW12_Const.isc \quad *** $11 / 10 / 16$
*** AERMET - VERSION 14134 *** ***
PAGE 13
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = LO000007 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
                                    DAY OF WEEK = WEEKDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 . 1000E+01
9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13 13.1000E+01 14.1000E+01 15 .1000E+01 16 .0000E+00
17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
                        DAY OF WEEK = SATURDAY
1.0000E+00 2 .0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 13.0000E+00 14.0000E+00 15 .0000E+00 16 .0000E+00
17.0000E+00 18.0000E+00 19 .0000E+00 20 .0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SUNDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 14 .0000E+00 15 .0000E+00 16 .0000E+00
```

Page 5

```
                    W12 Const
17.0000E+00 18 .0000E+00 19.0000E+00 20 .0000E+00 21 . 19 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
+ *** AERMOD - VERSION 15181 *** *** C:\MBAIW12\AERMODIW12_ConstIW12_Const.isc 11/10/16
*** AERMET - VERSION 14134*** *** 13:50:35
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
SOURCE ID = L0000008 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR
```

```
                                    DAY OF WEEK = WEEKDAY
```

 DAY OF WEEK = WEEKDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 . 1000E+01
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 . 1000E+01
 9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13 13.1000E+01 14.1000E+01 15 15 1000E+01 16 .0000E+00
 9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13 13.1000E+01 14.1000E+01 15 15 1000E+01 16 .0000E+00
 17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SATURDAY
DAY OF WEEK = SATURDAY
1.0000E+00 2.0000E+00 3.0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
1.0000E+00 2.0000E+00 3.0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11 .0000E+00 12.0000E+00 13 .0000E+00 14 14.0000E+00 15 15 .0000E+00 16 .0000E+00
9.0000E+00 10.0000E+00 11 .0000E+00 12.0000E+00 13 .0000E+00 14 14.0000E+00 15 15 .0000E+00 16 .0000E+00
17.0000E+00 18 .0000E+00 19 19 .0000E+00 20.0000E+00 21 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
17.0000E+00 18 .0000E+00 19 19 .0000E+00 20.0000E+00 21 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SUNDAY
DAY OF WEEK = SUNDAY
1.0000E+00 2 .0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
1.0000E+00 2 .0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 .0000E+00 14 14 .0000E+00 15 .0000E+00 16 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 .0000E+00 14 14 .0000E+00 15 .0000E+00 16 .0000E+00
17.0000E+00 18.0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
17.0000E+00 18.0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
q *** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
q *** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** C**** 13:50:35
*** AERMET - VERSION 14134 *** *** C**** 13:50:35
PAGE 15
PAGE 15
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

```
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
```

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
SOURCE ID = L0000009 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

DAY OF WEEK = WEEKDAY
$1.0000 \mathrm{E}+002 . .0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01$
$\begin{array}{lllllllllll}9 & .1000 \mathrm{E}+01 & 10 & .1000 \mathrm{E}+01 & 11 & .1000 \mathrm{E}+01 & 12 & .1000 \mathrm{E}+01 & 13 & .1000 \mathrm{E}+01 & 14\end{array} .1000 \mathrm{E}+01 \quad 15.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020 \quad .0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00$ DAY OF WEEK = SATURDAY

$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{lllllll}14 & 12 & 12000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00$
$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{llllllll}14 & 12.0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$

우*** AERMOD - VERSION $15181^{* * * * * * * ~ C: I M B A I W 12 \ A E R M O D I W 12 _C o n s t l W 12 ~ C o n s t . i s c ~} \quad$ 11/10/16
${ }^{* * *}$ AERMET - VERSION 14134 *** *** - $13: 50: 35$
PAGE 16
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = LO000010 ; SOURCE TYPE = VOLUME :
```

HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

DAY OF WEEK = WEEKDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .1000 \mathrm{E}+01$
$9.1000 \mathrm{E}+0110.1000 \mathrm{E}+01 \quad 11.1000 \mathrm{E}+0112.1000 \mathrm{E}+01 \quad 13.1000 \mathrm{E}+01 \quad 14.1000 \mathrm{E}+0115.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00$
$\begin{array}{lllllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}$ DAY OF WEEK = SATURDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+003.0000 \mathrm{E}+004.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8$.0000E+00
$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{lllllll}14 & 12.0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$
$\begin{array}{lllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+003.0000 \mathrm{E}+004.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8$.0000E+00

Page 6

```
*** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc *** 11/10/16
*** AERMET - VERSION 14134 *** ***
PAGE 17
*MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
```

```
SOURCE ID = L0000011 ; SOURCE TYPE = VOLUME
```

SOURCE ID = L0000011 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
----.-

```
```

 DAY OF WEEK = WEEKDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 1.0.0000E+00 7 7 .0000E+00 8 8 . 1000E+01
 9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13.1000E+01 14 14.1000E+01 15 .1000E+01 16 .0000E+00
 17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SATURDAY
 .0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6.0000E+00 7.0000E+00 8 .0000E+00
 9.0000E+00 10 .0000E+00 11 .0000E+00 12 .0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00
 17.0000E+00 18 .0000E+00 19.0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SUNDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
 9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13.0000E+00 14.0000E+00 15 .0000E+00 16 16 .0000E+00
 17.0000E+00 18 .0000E+00 19.0000E+00 20.0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
    ```

```

*** AERMET - VERSION 14134 *** ***
PAGE 18
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

```
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000012 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY
\(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01\)
\(9.1000 \mathrm{E}+0110.1000 \mathrm{E}+0111.1000 \mathrm{E}+01 \quad 12.1000 \mathrm{E}+0113.1000 \mathrm{E}+01 \quad 14.1000 \mathrm{E}+01 \quad 15.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00\)
\(\begin{array}{llllllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}\) DAY OF WEEK = SATURDAY
\(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00\)

\(\begin{array}{lllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}\) DAY OF WEEK = SUNDAY
\(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00\)

\(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00\)
우** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstIW12_Const.isc *** 11/10/16
*** AERMET - VERSION 14134 *** *** \(13: 50: 35\)
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
```

SOURCE ID = L0000013 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

```

\section*{DAY OF WEEK = WEEKDAY}
```

$1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01$
$9.1000 E+0110.1000 E+01 \quad 11.1000 E+01 \quad 12.1000 E+01 \quad 13.1000 E+01 \quad 14.1000 E+0115.1000 E+01 \quad 16.0000 E+00$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00$ DAY OF WEEK = SATURDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00$
$\begin{array}{llllllllllllllllll}9 & .0000 \mathrm{E}+00 & 10.0000 \mathrm{E}+00 & 11 & .0000 \mathrm{E}+00 & 12 & .0000 \mathrm{E}+00 & 13 & .0000 \mathrm{E}+00 & 14 & .0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00$ $9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{llllllll}14 & 12.0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$

```

```

ㅇ *** AERMOD - VERSION $15181^{* * *}{ }^{* * *}$ C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc $\quad 11 / 10 / 16$

```
\begin{tabular}{lll}
\(* * *\) \\
AERMET - VERSION \(141344^{* * *} * * *\) & W12_Const & PAGE 20
\end{tabular}
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000014 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR
```

 DAY OF WEEK = WEEKDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5 5.0000E+00 6 .0000E+00 7 .0000E+00 8 . 1000E+01
 9.1000E+01 10.1000E+01 11 .1000E+01 12.1000E+01 13 13.1000E+01 14 14.1000E+01 15 15 .1000E+01 16 .0000E+00
 17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SATURDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 6 .0000E+00 7.0000E+00 8 .0000E+00
 9.0000E+00 10.0000E+00 11 .0000E+00 12.0000E+00 13 13 .0000E+00 14 .0000E+00 15 15 .0000E+00 16 .0000E+00
 17.0000E+00 18.0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SUNDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 6.0000E+00 7 7 .0000E+00 8 .0000E+00
 9.0000E+00 10.0000E+00 11 .0000E+00 12.0000E+00 13.0000E+00 14 .0000E+00 15 15 .0000E+00 16 .0000E+00
 17.0000E+00 18 .0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 \circ *** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstIW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** 13:50:35
PAGE }2
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
SOURCE ID = L0000015 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
DAY OF WEEK = WEEKDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 6 .0000E+00 7 .0000E+00 8 . 1000E+01
9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 12 13.1000E+01 14.1000E+01 15 15 .1000E+01 16 .0000E+00
17.0000E+00 18.0000E+00 19 .0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SATURDAY

```

```

 9.0000E+00 10 .0000E+00 11 .0000E+00 12.0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00
 17.0000E+00 18.0000E+00 19 19 .0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SUNDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
 9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 13 .0000E+00 14 14.0000E+00 15 .0000E+00 16 .0000E+00
 17.0000E+00 18.0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22.0000E+00 23 .0000E+00 24 24 .0000E+00
우** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc *** 11/10/16
*** AERMET - VERSION 14134*** *** 13:50:35
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN PAGE 22

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW)*

```
SOURCE ID = L0000016 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
    DAY OF WEEK = WEEKDAY
    \(1.0000 \mathrm{E}+002 . .0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01\)
    \(9.1000 \mathrm{E}+01 \quad 10.1000 \mathrm{E}+01 \quad 11.1000 \mathrm{E}+01 \quad 12.1000 \mathrm{E}+01 \quad 13.1000 \mathrm{E}+01 \quad 14.1000 \mathrm{E}+01 \quad 15.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00\)
    \(\begin{array}{lllllllllllllllll}17 & .0000 E+00 & 18 & .0000 E+00 & 19 & .0000 E+00 & 20 & .0000 E+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}\)
                        DAY OF WEEK = SATURDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)

    \(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020 \quad .0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\)
                                    DAY OF WEEK = SUNDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)
    \(9.0000 \mathrm{E}+00 \quad 10.0000 \mathrm{E}+00 \quad 11.0000 \mathrm{E}+0012.0000 \mathrm{E}+00 \begin{array}{llllllll} & 13 & 120000 \mathrm{E}+00 & 14 & .0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16\end{array} .0000 \mathrm{E}+00\)
    \(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\)
ㅇ *** AERMOD - VERSION \(15181^{* * * * * * ~ C: I M B A I W 12 \ A E R M O D I W 12 \_C o n s t l W 12 ~ C o n s t . i s c ~ * * * ~ 11 / 10 / 16 ~}\)


\section*{W12 Const}

PAGE 23
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
```

SOURCE ID = L0000017 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
DAY OF WEEK = WEEKDAY

```

```

 \(9.1000 \mathrm{E}+01 \quad 10.1000 \mathrm{E}+01 \quad 11.1000 \mathrm{E}+0112.1000 \mathrm{E}+0113.1000 \mathrm{E}+0114.1000 \mathrm{E}+01 \quad 15.1000 \mathrm{E}+0116.0000 \mathrm{E}+00\)
 \(17.0000 \mathrm{E}+00 \quad 18.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+0022.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+0024.0000 \mathrm{E}+00\)
 DAY OF WEEK = SATURDAY
 \(.0000 \mathrm{E}+002.0000 \mathrm{E}+003.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)
 \(9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014.0000 \mathrm{E}+0015.0000 \mathrm{E}+0016.0000 \mathrm{E}+00\)
 $17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023$.0000E+00 $24.0000 \mathrm{E}+00$
DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+003.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+006.0000 \mathrm{E}+006.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00$
$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+00 \quad 13.0000 \mathrm{E}+0014.0000 \mathrm{E}+0015.0000 \mathrm{E}+0016.0000 \mathrm{E}+00$
$17.0000 \mathrm{E}+0018$.0000E $+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023$.0000E+00 $24.0000 \mathrm{E}+00$
${ }^{* * * *}$ AERMOD - VERSION $15181^{* * *} * * *$ C:IMBAIW12IAERMODIW12 ConstIW12 Const.isc $11 / 10 / 16$
*** AERMET - VERSION 14134 ******* **** $13: 50: 35$
PAGE 24

```
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
```

SOURCE ID = L0000018 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

```
.-..--.-.
                                    DAY OF WEEK = WEEKDAY
    \(1.0000 E+00 \quad 2.0000 E+00 \quad 3.0000 E+00 \quad 4.0000 E+00 \quad 5.0000 E+00 \quad 6 \quad .0000 E+00 \quad 7.0000 E+00 \quad 8.1000 E+01\)
    \(9.1000 E+01 \quad 10.1000 E+01 \quad 11.1000 E+01 \quad 12.1000 E+01 \quad 13.1000 E+0114.1000 E+01 \quad 15.1000 E+01 \quad 16.0000 E+00\)
    \(17.0000 E+00 \quad 18 \quad .0000 E+00 \quad 19 \quad .0000 E+00 \quad 20 \quad .0000 E+00 \quad 21 \quad .0000 E+00 \quad 22.0000 E+00 \quad 23.0000 E+00 \quad 24 \quad .0000 E+00\)
                            DAY OF WEEK = SATURDAY
    \(1.0000 E+00 \quad 2.0000 E+00 \quad 3.0000 E+00 \quad 4.0000 E+00 \quad 5.0000 E+00 \quad 6.0000 E+00 \quad 7 \quad .0000 E+00 \quad 8.0000 E+00\)
    9 . \(9000 \mathrm{E}+0010.0000 \mathrm{E}+00 \quad 11.0000 \mathrm{E}+00 \quad 12.0000 \mathrm{E}+00 \quad 13.0000 \mathrm{E}+0014.0000 \mathrm{E}+00 \quad 15.0000 \mathrm{E}+00 \quad 16 \quad .0000 \mathrm{E}+00\)
    \(17.0000 E+00 \quad 18.0000 E+00 \quad 19.0000 E+00 \quad 20.0000 E+00 \quad 21.0000 E+00 \quad 22.0000 E+00 \quad 23.0000 E+00 \quad 24 \quad .0000 E+00\)
                                    DAY OF WEEK = SUNDAY
    \(.0000 E+00 \quad 2.0000 E+00 \quad 3.0000 E+00 \quad 4 \quad .0000 E+00 \quad 5.0000 E+00 \quad 6 \quad .0000 E+00 \quad 7 \quad .0000 E+00 \quad 8.0000 E+00\)


\(\phi^{* * *}\) AERMOD - VERSION \(15181^{* * *} \overbrace{* * *}\) C: \MBAIW12\AERMODIW12_ConstlW12_Const.isc \(\quad 11 / 10 / 16\)
*** AERMET - VERSION 14134 *** *** 13:50:35
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000019 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR
```

DAY OF WEEK = WEEKDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .1000E+01
9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13 13.1000E+01 14.1000E+01 15 15 .1000E+01 16 .0000E+00
17.0000E +00 18.0000E+00 10.0000E+00 20 .0000E+00 19 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SATURDAY
.0000E+00 2 .0000E+00 3.0000E+00 4 .0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 13 .0000E+00 14 14.0000E+00 15 15 .0000E+00 16 .0000E+00
17.0000E+00 18 .0000E+00 19 19 .0000E+00 20.0000E+00 21 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SUNDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13.0000E+00 14 .0000E+00 15 15 .0000E+00 16 .0000E+00
17.0000E+00 18.0000E+00 19 .0000E+00 20 .0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
*** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** C*** 13:50:35
PAGE 26

```

Page 9
```

W12_Const
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
SOURCE ID = L0000020 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
--
DAY OF WEEK = WEEKDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .1000E+01
9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 12 13.1000E+01 14.1000E+01 15 15 1000E+01 16 .0000E+00
17.0000E+00 18.0000E+00 19 .0000E+00 20.0000E+00 21.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
DAY OF WEEK = SATURDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 13 .0000E+00 14 .0000E+00 15 .0000E+00 16 .0000E+00
17.0000E+00 18.0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23.0000E+00 24 .0000E+00
DAY OF WEEK = SUNDAY
1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
9.0000E+00 10.0000E+00 11 .0000E+00 12.0000E+00 13 13 .0000E+00 14 14.0000E+00 15 .0000E+00 16 .0000E+00
17.0000E+00 18 .0000E+00 19.0000E+00 20.0000E+00 21.0000E+00 22.0000E+00 23 .0000E+00 24 .0000E+00
우*** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** 13:50:35
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN PAGE 27

* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

```
SOURCE ID = L0000021 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR
- SCALAR
    DAY OF WEEK = WEEKDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+003.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01\)

    \(17.0000 \mathrm{E}+00 \quad 18.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+00 \quad 20.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\)
                        DAY OF WEEK = SATURDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)

    \(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020 \quad .0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+00 \quad 23.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\)
                                    DAY OF WEEK = SUNDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)

    \(\begin{array}{lllllllllllllllllllll}17.0000 E+00 & 18 & .0000 E+00 & 19.0000 E+00 & 20 & .0000 E+00 & 21 & .0000 E+00 & 22 & .0000 E+00 & 23 & .0000 E+00 & 24 & .0000 E+00\end{array}\)
o \(^{* * *}\) AERMOD - VERSION \(15181^{* * *} * * *\) C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc \(11 / 10 / 16\)
\({ }^{* * *}\) AERMET - VERSION 14134 *** *** \(13: 50: 35\)
    PAGE 28
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
    * SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
SOURCE ID = L0000022 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

                                    DAY OF WEEK = WEEKDAY
    \(1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .1000 \mathrm{E}+01\)
    \(9.1000 \mathrm{E}+0110.1000 \mathrm{E}+01 \quad 11.1000 \mathrm{E}+0112.1000 \mathrm{E}+01 \quad 13.1000 \mathrm{E}+01 \quad 14.1000 \mathrm{E}+0115.1000 \mathrm{E}+01 \quad 16.0000 \mathrm{E}+00\)
    \(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+00 \quad 19.0000 \mathrm{E}+00 \quad 20.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\)
                        DAY OF WEEK = SATURDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00\)
    \(9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014.0000 \mathrm{E}+0015.0000 \mathrm{E}+0016.0000 \mathrm{E}+00\)
    \(\begin{array}{lllllllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}\)
                        DAY OF WEEK = SUNDAY
    \(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00\)


q \(^{* * *}\) AERMOD - VERSION \(15181^{* * *} *_{* * *}\) C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc \(\quad .00{ }_{* * *}^{24} 11 / 10 / 16\)
*** AERMET - VERSION 14134 *** ***
        *** 13:50:35
        PAGE 29
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *
```

SOURCE ID = L0000023 ; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR HOUR SCALAR
HOUR SCALAR

```

\section*{DAY OF WEEK = WEEKDAY}
```

$1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01$
$9.1000 E+0110.1000 E+01 \quad 11.1000 E+01 \quad 12.1000 E+01 \quad 13.1000 E+0114.1000 E+0115.1000 E+01 \quad 16.0000 E+00$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00$ DAY OF WEEK = SATURDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00$
$9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{llllllll}14 & 12.0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}$
$17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+0022 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+0024.0000 \mathrm{E}+00$ DAY OF WEEK = SUNDAY
$1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8 \quad .0000 \mathrm{E}+00$ $9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014.0000 \mathrm{E}+0015.0000 \mathrm{E}+00 \quad 16.0000 \mathrm{E}+00$ $17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+00 \quad 21.0000 \mathrm{E}+0022.0000 \mathrm{E}+0023.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00$ 우 *** AERMOD - VERSION $15181^{* * * *}{ }_{* * *}^{*}$ C:IMBAIW12IAERMODIW12_ConstIW12_Const.isc \quad *** $11 / 10 / 16$ *** AERMET - VERSION 14134 *** *** - 13:50:35
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

```
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000024; SOURCE TYPE = VOLUME
HOUR SCALAR HOUR SCALAR
```

 DAY OF WEEK = WEEKDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 . 1000E+01
 9.1000E+01 10.1000E+01 11.1000E+01 12.1000E+01 13.1000E+01 14 14.1000E+01 15 15.1000E+01 16 .0000E+00
 17.0000E+00 18 .0000E+00 19 .0000E+00 20 .0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SATURDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5 .0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
 9.0000E+00 10.0000E+00 11 .0000E+00 12.0000E+00 13 .0000E+00 14 .0000E+00 15 15 .0000E+00 16 .0000E+00
 17.0000E+00 18 .0000E+00 19 19 .0000E+00 20.0000E+00 121.0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
 DAY OF WEEK = SUNDAY
 1.0000E+00 2.0000E+00 3.0000E+00 4.0000E+00 5.0000E+00 6 .0000E+00 7 .0000E+00 8 .0000E+00
 9.0000E+00 10.0000E+00 11.0000E+00 12.0000E+00 12 13.0000E+00 14.0000E+00 15 15 .0000E+00 16 .0000E+00
 17.0000E+00 18 .0000E+00 19.0000E+00 20.0000E+00 21 .0000E+00 22 .0000E+00 23 .0000E+00 24 .0000E+00
+*** AERMOD - VERSION 15181 *** *** C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc 11/10/16
*** AERMET - VERSION 14134 *** *** 13:50:35
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

```
* SOURCE EMISSION RATE SCALARS WHICH VARY DIURNALLY AND BY DAY OF WEEK (HRDOW) *

SOURCE ID = L0000025 ; SOURCE TYPE = VOLUME :
HOUR SCALAR HOUR SCALAR

DAY OF WEEK = WEEKDAY
\(1.0000 \mathrm{E}+00 \quad 2.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.1000 \mathrm{E}+01\)

\(\begin{array}{lllllllllllllllllll}17 & .0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19 & .0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}\) DAY OF WEEK = SATURDAY
\(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+004.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)

\(17.0000 \mathrm{E}+0018.0000 \mathrm{E}+0019.0000 \mathrm{E}+0020.0000 \mathrm{E}+0021.0000 \mathrm{E}+00 \quad 22.0000 \mathrm{E}+0023.0000 \mathrm{E}+00 \quad 24.0000 \mathrm{E}+00\) DAY OF WEEK = SUNDAY
\(1.0000 \mathrm{E}+002.0000 \mathrm{E}+00 \quad 3.0000 \mathrm{E}+00 \quad 4.0000 \mathrm{E}+00 \quad 5.0000 \mathrm{E}+00 \quad 6.0000 \mathrm{E}+00 \quad 7.0000 \mathrm{E}+00 \quad 8.0000 \mathrm{E}+00\)
\(9.0000 \mathrm{E}+0010.0000 \mathrm{E}+0011.0000 \mathrm{E}+0012.0000 \mathrm{E}+0013.0000 \mathrm{E}+0014 \begin{array}{lllllll}14 & 12.0000 \mathrm{E}+00 & 15 & .0000 \mathrm{E}+00 & 16 & .0000 \mathrm{E}+00\end{array}\)
\(\begin{array}{lllllllllllllllllll}17.0000 \mathrm{E}+00 & 18 & .0000 \mathrm{E}+00 & 19.0000 \mathrm{E}+00 & 20 & .0000 \mathrm{E}+00 & 21 & .0000 \mathrm{E}+00 & 22 & .0000 \mathrm{E}+00 & 23 & .0000 \mathrm{E}+00 & 24 & .0000 \mathrm{E}+00\end{array}\)
\(+_{* * *}^{* * *}\) AERMOD - VERSION \(15181^{* * * * * * *}\) C:IMBAIW12\AERMODIW12_ConstlW12_Const.isc \(\quad\) 11/10/16
\({ }^{* * *}\) AERMET - VERSION \(14134^{* * *}\) *** \(13: 50: 35\)
PAGE 32
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
```

*** X-COORDINATES OF GRID ***

```
    (METERS)
563784.6, 563834.6, 563884.6, 563934.6, 563984.6, 564034.6, 564084.6, 564134.6, 564184.6, 564234.6, \(564284.6,564334.6,564384.6,564434.6,564484.6,564534.6,564584.6,564634.6,564684.6,564734.6\), 564784.6,
*** Y-COORDINATES OF GRID ***
(METERS)
4183431.3, 4183481.3, 4183531.3, 4183581.3, 4183631.3, 4183681.3, 4183731.3, 4183781.3, 4183831.3, 4183881.3,
4183931.3, 4183981.3, 4184031.3, 4184081.3, 4184131.3, 4184181.3, 4184231.3, 4184281.3,

ㅇ \(_{* * * *}^{*}\) AERMOD - VERSION \(15181^{* * * *} * * *\) C:IMBAIW12VAERMODIW12_ConstIW12_Const.isc \(\quad\) *** \(11 / 10 / 16\)
*** AERMET - VERSION 14134 *** *** - 13:50:35
PAGE 33
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***
* ELEVATION HEIGHTS IN METERS *


Page 12

* HILL HEIGHT SCALES IN METERS *

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 4184281.33 | & 12.00 & 12.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 \\
\hline 4184231.33 | & 12.00 & 12.00 & 12.30 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 & 12.70 \\
\hline 4184181.33 | & 12.00 & 12.00 & 12.00 & 12.20 & 13.00 & 13.00 & 13.00 & 13.00 & 13.00 \\
\hline 4184131.33 | & 11.50 & 12.00 & 12.00 & 12.00 & 12.70 & 13.00 & 13.00 & 13.00 & 13.00 \\
\hline 4184081.33 | & 11.00 & 11.60 & 12.00 & 12.00 & 12.60 & 13.00 & 13.00 & 13.00 & 13.00 \\
\hline 4184031.33 | & 11.00 & 11.00 & 11.50 & 12.00 & 12.00 & 12.20 & 12.20 & 13.00 & 13.00 \\
\hline 4183981.33 | & 10.50 & 11.00 & 11.00 & 11.50 & 12.00 & 12.00 & 12.00 & 12.00 & 12.50 \\
\hline 4183931.33 | & 10.00 & 10.00 & 10.90 & 11.00 & 11.00 & 11.90 & 12.00 & 12.00 & 12.00 \\
\hline 4183881.33 | & 9.20 & 9.80 & 10.10 & 11.00 & 11.00 & 11.10 & 11.20 & 11.80 & 12.00 \\
\hline 4183831.33 | & 8.50 & 9.00 & 9.50 & 10.00 & 10.40 & 10.70 & 11.00 & 11.00 & 11.00 \\
\hline 4183781.33 | & 7.80 & 8.00 & 8.30 & 9.00 & 9.70 & 10.00 & 10.00 & 10.80 & 11.00 \\
\hline 4183731.33 | & 7.00 & 7.20 & 8.00 & 8.20 & 8.90 & 9.50 & 10.00 & 10.00 & 10.20 \\
\hline 4183681.33 | & 6.50 & 7.00 & 7.20 & 8.00 & 8.40 & 8.70 & 9.00 & 9.50 & 9.80 \\
\hline 4183631.33 | & 6.00 & 6.60 & 6.90 & 7.00 & 7.80 & 8.00 & 8.00 & 8.80 & 8.80 \\
\hline 4183581.33 | & 6.00 & 6.00 & 6.10 & 7.00 & 7.00 & 7.20 & 7.20 & 8.00 & 9.50 \\
\hline 4183531.33 | & 5.00 & 5.10 & 5.20 & 6.00 & 6.00 & 6.70 & 7.50 & 6.30 & 13.00 \\
\hline 4183481.33 | & 4.00 & 4.60 & 5.00 & 5.00 & 5.00 & 6.00 & 5.00 & 5.70 & 17.00 \\
\hline 4183431.33 | & 4.00 & 4.00 & 4.50 & 5.00 & 5.00 & 5.20 & 5.00 & 6.00 & 17.00 \\
\hline
\end{tabular}

Page 13

W12 Const

* HILL HEIGHT SCALES IN METERS *



\footnotetext{
*** DISCRETE CARTESIAN RECEPTORS ***
(X-COORD, Y-COORD, ZELEV, ZHILL, ZFLAG) (METERS)
}

\section*{W12 Const}
```

 (564422.5, 4184053.5,
 5644718, 4183890.0
 o *** AERMOD - VERSION 15181*** *** C:IMBAIW12\AERMODIW12_ConstIW12_Const.isc
*** AERMET - VERSION 14134 *** *** C.NBAIN **** 13:50:35
PAGE 40
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

* SOURCE-RECEPTOR COMBINATIONS FOR WHICH CALCULATIONS MAY NOT BE PERFORMED *
LESS THAN 1.0 METER; WITHIN OPENPIT; OR BEYOND 80KM FOR FASTAREA/FASTALL

```

```

| L0000003 | 564334.6 | 4183931.3 | -5.72 |
| :--- | :--- | :--- | :---: |
| L0000004 | 564334.6 | 4183931.3 | -11.59 |
| L0000009 | 564284.6 | 4183831.3 | -1.42 |
| L0000010 | 564284.6 | 4183831.3 | -12.60 |
| L0000012 | 564284.6 | 4183781.3 | -0.16 |
| L0000016 | 564234.6 | 4183731.3 | -10.31 |
| L0000017 | 564234.6 | 4183731.3 | 0.05 |
| L0000018 | 564234.6 | 4183681.3 | -0.45 |
| L0000019 | 564234.6 | 4183681.3 | -2.43 |
| L0000022 | 564184.6 | 4183631.3 | -6.56 |
| L0000023 | 564184.6 | 4183631.3 | -1.83 |
| LO000024 | 564184.6 | 4183581.3 | 0.42 |
| LOOOOO25 | 564184.6 | 4183581.3 | -6.26 |

```

```

*** AERMET - VERSION 14134 *** ***
PAGE 41
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN

```
```

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING ***
(1=YES; 0=NO)

```

11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111 111111111111111

NOTE: METEOROLOGICAL DATAACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.
*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC)
1.54, 3.09, 5.14, 8.23, 10.80,

ㅇ *** AERMOD - VERSION 15181*** *** C:IMBAIW12VAERMODIW12_ConstlW12_Const.isc *** 11/10/16
*** AERMET - VERSION 14134 *** ***
PAGE 42
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***
Surface file: ..1724930.SFC
Met Version: 14134
Profile file: .. 7724930. PFL
Surface format: FREE
Profile format: FREE
Surface station no.: 23230 Upper air station no.: 23230
Name: OAKLAND/WSO_AP
Name: OAKLAND/WSO_AP
Year: 2009 Year: 2009

First 24 hours of scalar data
YR MO DY JDY HR HO U* W* DT/DZ ZICNV ZIMCH M-O LEN ZO BOWEN ALBEDO REF WS WD HT REFTA HT


First hour of profile data
YR MO DY HR HEIGHT F WDIR WSPD AMB_TMP sigmaA sigmaW sigmaV
\(09010101 \quad 10.01\) 81. \(2.36 \quad 282.6\) 99.0 \(-\overline{9} 9.00\)-99.00
F indicates top of profile ( \(=1\) ) or below ( \(=0\) )
\(ף^{* * *}\) AERMOD - VERSION 15181*** **** C:IMBAIW12VAERMODIW12_ConstlW12_Const.isc \({ }_{* \overline{* *}}\) 11/10/16
*** AERMET - VERSION 14134 *** *** PAGE 43
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** THE PERIOD ( 43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: AREAEXH *** INCLUDING SOURCE(S): AREAEXH
*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***
** CONC OF UNITEMIS IN MICROGRAMS/M**3 **


Page 16


Page 17
*** THE PERIOD ( 43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: AREAEXH *** INCLUDING SOURCE(S): AREAEXH
*** DISCRETE CARTESIAN RECEPTOR POINTS ***
** CONC OF UNITEMIS IN MICROGRAMS/M**3

```

*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***
** CONC OF UNITEMIS IN MICROGRAMS/M**3 **

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Y-COORD & \multicolumn{10}{|c|}{X-COORD (METERS)} \\
\hline (METERS) | & 563784.57 & 563834.57 & 563884.57 & 7563934 & 56398 & . 5756403 & 34.57 & 84.57 & 564134.57 & 564184.57 \\
\hline 4184281.33 | & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\hline 4184231.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\hline 4184181.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\hline 4184131.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\hline 4184081.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\hline 4184031.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & \\
\hline 4183981.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & \\
\hline 4183931.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & \\
\hline 4183881.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & 0.00001 & \\
\hline 4183831.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & 0.00002 & \\
\hline 4183781.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & 0.00002 & \\
\hline 4183731.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & 0.00003 & \\
\hline 4183681.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00002 & 0.00005 & \\
\hline 4183631.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00002 & 0.00005 & \\
\hline 4183581.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00001 & 0.00002 & \\
\hline 4183531.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & 0.00002 & \\
\hline 4183481.33 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00001 & \\
\hline 4183431.33 | & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|c|}{PAGE 48} \\
\hline
\end{tabular}
**MODELOPTs: NonDFAULT CONC ELEV FASTALL URBAN
*** THE PERIOD ( 43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: OFFEXH *** INCLUDING SOURCE(S): L0000001 ,L0000002 ,L0000003 ,L0000004 ,L0000005 L0000006 , L0000007 , L0000008 , L0000009 , L0000010 , L0000011 , L0000012 , L0000013 , L0000014 , L0000015 , L0000016 , L0000017 , L0000018 , L0000019 , L0000020 , L0000021 ', L0000022 , L0000023 , L0000024 , L0000025 ,

> *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***
** CONC OF UNITEMIS IN MICROGRAMS/M**3 **
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Y-COORD & & & X-COORD & ETERS) & & & & & \\
\hline (METERS) & 564234.57 & 564284.57 & 564334.57 & 564384.57 & 564434.57 & 564484.57 & 564534.57 & 564584.57 & 564634.57 \\
\hline
\end{tabular}
\begin{tabular}{llllllllllll}
\(4184281.33 \mid\) & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & W12_Co & & & & \\
\hline 4184231.33 | & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline 4184181.33 | & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline 4184131.33 | & 0.00000 & 0.00000 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00000 & 0.00000 & 0.00000 \\
\hline 4184081.33 | & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 \\
\hline 4184031.33 | & 0.00001 & 0.00001 & 0.00002 & 0.00003 & 0.00002 & 0.00002 & 0.00001 & 0.00001 & 0.00001 \\
\hline 4183981.33 | & 0.00001 & 0.00002 & 0.00006 & 0.00012 & 0.00004 & 0.00002 & 0.00002 & 0.00001 & 0.00001 \\
\hline 4183931.33 | & 0.00002 & 0.00004 & 0.00009 & 0.00013 & 0.00005 & 0.00003 & 0.00002 & 0.00001 & 0.00001 \\
\hline 4183881.33 | & 0.00002 & 0.00007 & 0.00024 & 0.00009 & 0.00005 & 0.00003 & 0.00002 & 0.00001 & 0.00001 \\
\hline 4183831.33 | & 0.00004 & 0.00009 & 0.00015 & 0.00007 & 0.00004 & 0.00003 & 0.00002 & 0.00001 & 0.00001 \\
\hline 4183781.33 | & 0.00006 & 0.00020 & 0.00010 & 0.00005 & 0.00003 & 0.00002 & 0.00002 & 0.00001 & 0.00001 \\
\hline 4183731.33 | & 0.00006 & 0.00015 & 0.00007 & 0.00004 & 0.00003 & 0.00002 & 0.00002 & 0.00001 & 0.00001 \\
\hline 4183681.33 | & 0.00012 & 0.00010 & 0.00005 & 0.00003 & 0.00002 & 0.00002 & 0.00001 & 0.00001 & 0.00001 \\
\hline 4183631.33 | & 0.00015 & 0.00006 & 0.00004 & 0.00002 & 0.00002 & 0.00001 & 0.00001 & 0.00001 & 0.00001 \\
\hline 4183581.33 | & 0.00007 & 0.00004 & 0.00002 & 0.00002 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 \\
\hline 4183531.33 | & 0.00002 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 \\
\hline 4183481.33 | & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00001 & 0.00000 & 0.00000 & 0.00000 \\
\hline 4183431.33 | & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{q \(_{* * *}^{* *}\) AERMOD - VERSION \(15181^{* * *} \quad * * *\)
\({ }_{* * *}\) AERMET - VERSION \(14134^{* * *} * * *\)}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|c|}{PAGE 49} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|r|}{*** THE PERIOD ( 43872 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: OFFEXH} \\
\hline & ICLUDING S & URCE(S): & L0000001 & , L0000002 & L0000003 & L0000004 & , L0000005 & \\
\hline L0000006 & , L0000007 & L0000008 & , L0000009 & L0000010 & , L0000011 & L0000012 & , L0000013 & \\
\hline L0000014 & , L0000015 & L0000016 & L0000017 & L0000018 & L0000019 & L0000020 & , L0000021 & \\
\hline L0000022 & , L0000023 & L0000024 & , L0000025 & & & & & \\
\hline
\end{tabular}

> *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***
** CONC OF UNITEMIS IN MICROGRAMS/M**3 **


Page 19


\footnotetext{
*** AERMOD Finishes Successfully ***
}

\section*{ATTACHMENT A}

Attachment B: Estimates of Construction Diesel PM \(\mathbf{2 . 5}^{\text {Emissions }}\) and Health Risk Impacts With Mitigation

\section*{ATTACHMENT A}

Attachment B
W12 Mixed Use Project

\section*{ATTACHMENT A}

\section*{}
W12 Mixed Use Project: Oakland

W12 Mixed Use Project: Oakland
Tier IV Mitigation
Estimated Cancer Risks from Construction DPM - Infant Receptors
Cancer Unit Risk Factor: \(\quad\) 3rd Trimester \(\quad\) Year 1 (2017)
\(\begin{array}{cc}(\mathrm{ug} / \mathrm{m} 3)^{-1} & (\mathrm{ug} / \mathrm{m} 3)^{-1} \\ 11.6 & 139.6\end{array}\)
3rd Trimester Year 1 (2017) Total
Cancer Risk (/million)
1.56218 0.25347 0.14295
 0.25466
W12 Mixed Use Project: Oakland
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Cancer Risk Impacts from Construction at the Maximum Impacted Sensitive Receptor - Child} \\
\hline Cancer Potency Factor: & & \((\mathrm{mg} / \mathrm{kg} \text {-day })^{-1}\) & & & \\
\hline Exposure Frequency & 350 & days/year & & & \\
\hline Averaging Period & 25550 & days & & & \\
\hline DPM & & Daily Breathing & Time At & Exposure & Unit \\
\hline Concentration & Age Sensitivty & Rate & Home & Duration & Cancer Risk \\
\hline Year (ug/m3) & Factor & (L/kg-day) & Factor & (years) & (/million) \\
\hline 1 & 3 & 572 & 0.73 & 1 & 18.9 \\
\hline
\end{tabular}
Tier IV Mitigation
Estimated Cancer Risks from Construction DPM - Child Receptors
\(\begin{array}{cc}\text { Cancer Unit Risk Factor: } & \text { Year } 1(2017) \\ (\mathrm{ug} / \mathrm{m} 3)^{-1} \\ 18.9\end{array}\)
\[
\begin{array}{ccc}
\text { X } & \text { Y } & \begin{array}{c}
\text { Year 1 (2017) } \\
\text { Cancer riskRisk }
\end{array} \\
(\mathbf{m}) & (\mathbf{m}) & (/ \text { million) }
\end{array}
\]
W12 Mixed Use Project: Oakland

Estimated Cancer Risks from Construction DPM - Adult Receptors

Tier IV Mitigation
Estimated Chronic Non-Cancer Hazard Index from Construction DPM
Reference Exposure Level for DPM:
\(\begin{array}{ccc}\mathbf{X} & \mathbf{Y} & \begin{array}{c}\text { Year 1 (2017) } \\ \text { Chronic Non-Cancer } \\ \text { Hazard Index }\end{array} \\ \mathbf{( m )} & \mathbf{( m )} & 0.00207 \\ 564422.54 & 4184053.48 & 0.00034 \\ 564249.79 & 4184051.74 & 0.00019 \\ 564355.29 & 4184176.96 & 0.00037 \\ 564460.22 & 4184129.42 & 0.00023 \\ 564471.81 & 4183890.01 & 0.00034 \\ 564328.93 & 4183850.83 & \end{array}\)

> Attachment C:
> Comparison of Cancer Risks from BAAQMD Guidance











    70-year Exposure Duration
Original BAAQMD Guidance
Cancer Risk Calculation for 1 ug/m3 DPM concentration (assuming constant DPM concentration)

555 Old County Road, San Carlos, CA 94070 T 650.570 .6161 F 650.570.6144
www.johnstonemoyer.com Contractor's License \#B 818919

\author{
Justin Osier \\ The Martin Group \\ 44 Montgomery St, \\ Suite 4050 \\ San Francisco, CA 94104
}

RE: Use of Tier 4 Rated Emissions Certifications for Equipment at the W12 Project located at Webster and \(12^{\text {th }}\) Street Oakland, CA

Dear Mr. Osier,

I'm writing in response to your request for information on the equipment that will be utilized for the upcoming W12 Project located at \(12^{\text {th }}\) and Webster Street in Oakland, CA. As requested, all of the equipment used in the demolition, excavation, utilities and concrete operations will meet the current Tier 4 emission standards as required under the Standard Conditions of Approval (SCA) AIR-1.

We understand the requirement to use Tier 4 construction equipment and will comply with this requirement. If you have any questions please feel free to contact me.

Very truly yours,

JOHNSTON MOPER, INC.


\title{
Pacific States
}

ENVIRONMENTAL CONTRACTORS, INC.

Mr. Gary Woolford
November 16, 2016
Johnstone Moyer Inc.
555 Old County Road
San Carlos, CA 94070
Re: Use of Tier 4 Rated Emissions Certifications for Equipment at Webster @ \(12^{\text {th }}\) Street Project in Oakland
Gary,
I write in response to your request for information on the equipment scheduled for use at the Webster @12 \({ }^{\text {th }}\) Street project in Oakland, California. As requested, below is a list of emission generating equipment that were used on our recent project at 3093 Broadway in Oakland and will be very similar to that used on the Webster Street project:

List of equipment requiring Tier 4 Certification we will be using onsite:
- Caterpillar 321D excavator
- Caterpillar 336E excavator
- Caterpillar 415 skip loader
- Caterpillar D6K2 dozer
- Caterpillar 14H blade
- Caterpillar 950 H loader
- Caterpillar CS56B roller
- Caterpillar CP563E roller
- Caterpillar CS76 rolier
- John Deere 210L skip loader

It is our understanding that all of the equipment listed above must meet Tier 4 emission standards as required under Standard Condition of Approval (SCA) AIR-1. The Tier 4 emissions compliant equipment listed above will come from our existing fleet and local rental vendors.

We understand the requirement to use Tier 4 compliant construction equipment and will comply with this requirement. If you have any questions, please let me know.

Respectfully Submitted,
Pacific States Environmental Contractors, Inc.


Pete Timmerman
Chief Estimator

\title{
ADAMS BROADWELL JOSEPH \& CARDOZO
}

A PROFESSIONAL CORPORATION

ATtORNEYS AT LAW
601 GATEWAY BOULEVARD, SUITE 1000 SOUTH SAN FRANCISCO, CA 94080-7037

TEL: (650) 589-1660
FAX: (650) 589.5062
Ihorton@adamsbroadwell.com

March 16, 2016

\section*{VIA EMAIL AND U.S. MAIL}

Planning Commission
Oakland City Hall
One Frank H. Ogawa Plaza, Hearing Room No. 1
Oakland, CA 94612
Emails: jmoore.ocpc@gmail.com
nagrajplanning@gmail.com
jahazielbonillaoaklandpc(@gmail.com
amandamonchamp@gmail.com
jmyres.oakplanningcommission@gmail.com
pattillo@pgadesign.com
EW.Oakland@gmail.com
Peterson Vollman
Planner II
City of Oakland
250 Frank H. Ogawa Plaza, Suite 2114
Oakland, CA 94612
Email: pvollmann@oaklandnet.com

\section*{Re: Responses to Comments on the Jack London Square 4th \& Madison Project (ER 15-005)}

Dear Honorable Members of the Oakland Planning Commission and Mr. Vollman:
We are writing on behalf of Oakland Residents for Responsible Development regarding the Jack London Square 4th \& Madison Project ("Project"), proposed by the Carmel Partners ("Applicant"). Based on our review of the Final Environmental Impact Report ("FEIR") prepared by the City of Oakland ("City"), as well as the Project's Staff Report for the March 16, 2016 hearing, we believe the City has adequately addressed the issues raised in our September 25, 2015 comments on the

March 16, 2016
Page 2

Draft Environmental Impact Report ("DEIR"). We describe below the most important issues raised in our comments and the City's responses.

First, we previously commented that the DEIR failed to sufficiently describe the Project by failing to adequately describe aspects of the Project's design features and failing to describe dewatering requirements for the Project, which could lead to potentially significant impacts. In response, the City made several changes to the FEIR, which now provides: more specific details on the construction schedule; further explanation that the retail space analysis is not dependent on the retail space location; further details on transportation design features including driveway locations, as well as further detail on the City process for reviewing the final design to ensure adequate site distance is provided and all safety issues are addressed; and further analysis on the potential for dewatering and exposure to contaminated soil and water, including the process and schedule for dewatering as well as the requirements of the Construction General Permit and the City's Standard Conditions of Approval as applied to discharges of contaminated water from the Project site.

Second, we commented that the DEIR underestimated construction emissions by failing to use the correct modeling inputs for architectural coating, demolition of existing buildings, percent reductions for daily trip rates, construction duration, and assumption of Tier 4 engine use. In response, the City prepared revised air
modeling using corrected inputs. Specifically, the City changed the concentration of VOCs in architectural coatings, which we noted was inconsistent between the DEIR and modeling files. In addition, the City provided further explanation of construction activities associated with site preparation and building demolition, as reflected in the modeling files. The City also removed the 16.2 percent reduction we noted was incorrectly applied in the modeling files because it had already applied a reduction elsewhere in the modeling. Finally, the revised air modeling used the appropriate default construction durations. The Project will also implement all basic and enhanced best management practices for construction and the City has ensured the use of Tier 4 engines by including it as enforceable mitigation, which would further reduce construction emissions. The revised model concluded that the Project's emissions will not result in a significant air quality impact.

Third, we previously commented that the DEIR underestimated Greenhouse Gas Emissions ("GHGs") because it incorrectly calculated the service population and used incorrect parameters and an inflated percent reduction in daily trips in its

March 16, 2016
Page 3
modeling files, as explained above. The FEIR clarified the City's approach to determining the Project's service population. Specifically, the City explained that the 2013 United States Census for the City of Oakland, which it used in its estimation, relies on population per room, and not only bedrooms. The City then revised its estimate, taking into account our modeling file input comments as explained above. In addition, the Project will implement several mitigation measures, such as compliance with CALGreen mandatory measures and the applicable requirements of the Green Building Ordinance, which would further reduce the Project's GHG emissions. The City's revised model falls below the significance threshold.

Fourth, we commented that because of the Project site's long history of industrial uses, potential soil and groundwater contamination had not been adequately evaluated. Specifically, we found that the DEIR had not adequately evaluated the dewatering potential and associated impacts, and had not completed a Phase II Environmental Site Assessment ("ESA"). In response, as stated above, the City provided further details on potential dewatering impacts and clarified the City's plan to handle stormwater contaminants related to industrial uses. In addition, the City conducted a Phase II ESA for the Project site, which found that no further studies or remedial action are recommended for the projects site at this time.

We thank the City for taking seriously the legal and technical issues identified in our submittal, and for its thorough and good faith responses and additional analysis and mitigation added in the FEIR. In light of the City's response to our comments, we have no further comments and withdraw our objections to the EIR and the Project.

Thank you for your attention to this matter.


LEH:ric

ADAMS BROADWELL JOSEPH \& CARDOZO
A PROFESSIONAL CORPORATION
ATTORNEYS AT LAW
601 GATEWAY BOULEVARD, SUITE 1000
SOUTH SAN FRANCISCO, CA \(94080-7037\)

TEL: (650) 589-1660
FAX: (650) 589-5062
Isobczynski@adamsbroadwell.com

SACRAMENTO OFFICE
520 CAPITOL MALL, SUITE 350 SACRAMENTO, CA 95814-4721

TEL: (916) 444-6201
FAX: (916) 444-6209

November 14, 2016

\section*{VIA EMAIL AND MAIL}

Mayor Libby Schaaf and honorable City Council Members Dan Kalb, Abel J. Guillén, Lynette Gibson McElhaney, Annie Campbell Washington, Noel Gallo, Desley Brooks, Larry Reid, Rebecca Kaplan
C/O City Clerk
City of Oakland
One Frank H. Ogawa Plaza
Oakland, CA 94612
Email: cityclerk@oaklandnet.com
Peterson Vollmann, Planner III
Oakland Community and Economic Development Agency
Planning and Zoning Division
City of Oakland
250 Frank H. Ogawa Plaza, Suite 2114
Oakland, CA 94612
Email: pvollmann@oaklandnet.com
Re: 14 th \& Alice Appeal (Project Case No. PLN15-320)
Dear Mayor Libby Schaaf, Honorable City Council Members, Mr. Vollman:
Appellant Oakland Residents for Responsible Development ("Residents") submits this response to the October 24, 2016 Agenda Report regarding Project Case No. PLN15-320, 14th \& Alice Appeal ("Project"), and the CEQA Analysis prepared by the City of Oakland ("City") for the Project pursuant to the California Environmental Quality Act ("CEQA"). \({ }^{1}\)

Residents and its expert consultants from Soil / Water / Air Protection Enterprise ("SWAPE") reviewed the October 24, 2016 Agenda Report for the November 14, 2016 Special City Council Meeting along with its attachments, including the October 21, 2016 Memorandum from ICF International (Attachment

\footnotetext{
\({ }^{1}\) Pub. Resources Code ("PRC") §§ 21000 et seq.; 14 Cal. Code Regs. ("CCR") \(\S 15000\) et seq. 3506-013acp
}

B to the Agenda Report) ("ICF Memorandum"). Based on our legal and technical review, Residents has concluded that the City has adequately addressed the issues raised in our prior comments and our July 1, 2016 appeal.

In response to our comments and appeal, the City:
- Clarified the amount of architectural coating and mitigation that would be used for the Project and revised its air quality analysis to demonstrate that volatile organic compounds would not exceed construction air emissions thresholds.
- Prepared a health risk assessment ("HRA") in response to our specific comments concerning diesel particulate matter and other constructionrelated emissions.
- Corrected an error in the HRA analysis, which had indicated that the Project would cause significant health risks. Once corrected, the HRA demonstrated that the Project did not pose a significant health risk assuming compliance with mitigation measure, SCA-AIR-1.
- Conducted additional research and investigation with regard to the feasibility of obtaining Tier 4 construction equipment. The City provided letters from subcontractors submitted by the Applicant indicating the availability of some (but not all) Tier 4 construction equipment for Project construction.

With respect to the Tier 4 equipment issue, Residents urges the City to ensure that all construction equipment utilized for Project construction will be Tier 4. The subcontractor letters provided by the Applicant do not list all equipment needed for the Project. Although Residents remains concerned that the City has not incorporated adequate enforcement mechanisms into the proposed Project approvals and Project mitigation measures to ensure that the Applicant will comply with the SCA-AIR-1 requirement to use Tier 4 equipment, in this case, Residents is relying in good faith on the City's obligation to monitor Project construction activities. We continue to encourage the City to implement enforceable construction monitoring plans and equipment tracking to ensure that all construction equipment is Tier 4.

With respect to other projects, Residents thanks the City for its substantive responses to concerns Residents has raised. For example, for the 2400 Valdez 3506-013acp
project, the City clarified the amount of excavation and revised its analysis of greenhouse gas emissions. For the Jack London Square \(4^{\text {th }}\) and Madison project, the City, in response to Residents' comments, prepared an updated construction emissions model, which corrected numerous errors in the City's original analysis. These factors included correcting the concentration of volatile organic compounds in architectural coatings, clarifying construction activities associated with site preparation and building demolition, removing a duplicative reduction in traffic emissions and using the appropriate default construction durations. The revised air modeling showed that the project's construction emissions would be less than significant. Due to our involvement and the City's positive responses during the review processes, greater protections for worker safety, public health, and the environment have been implemented.

We thank the City for taking seriously the legal and technical issues identified in our comments and appeal, and for its thorough and good faith responses and additional investigations. In light of the City's response to our comments and appeal, we hereby withdraw our appeal of the 14th and Alice Project and encourage the City to actively monitor the construction activity at the project site to ensure SCA-AIR-1 compliance.

Sincerely,


LTS:acp```


[^0]:    ${ }^{1}$ City of Oakland, CEQA Thresholds of Significance Guidelines. 2013. Website: http://www2.oaklandnet.com/oakca1 /groups/ceda/documents/report/oak051200.pdf. October 28,
    ${ }^{2}$ City of Oakland. 2016. W12 Mixed Use Project CEQA Analysis. July. Website: http://www2.oaklandnet.com/oakca1 /groups/ceda/documents/report/oak059795.pdf.

[^1]:    ${ }^{3}$ ARB. 1998. The Toxic Air Contaminant Identification Process: Toxic Air Contaminant Emissions from Diesel-fueled Engines. Website: www.arb.ca.gov/toxics/dieseltac/factsht1.pdf.
    ${ }^{4}$ City of Oakland 2014. Lake Merritt Station Area Plan EIR. Website: http://www2.oaklandnet.com/Government/o/PBN/OurServices /Plans/DOWD008198.

[^2]:    ${ }^{5}$ City of Oakland. 2016. W12 Response to Comment Letters from Adams and Broadwell Joseph \& Cardozo, pages 7 and 11. Website: http://www2.oaklandnet.com/oakca1/groups/ceda/documents/agenda/oak060234.pdf.

[^3]:    6 ESA emission estimates were supplied by Ms. Jennifer Renk on November 7, 2016.

[^4]:    7 BAAQMD. 2016. Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. Website: http://www.baaqmd.gov/~/media/files /planning-and-research/rules-and-regs/workshops/2016/reg-2-5/hra-guidelines_clean_jan_2016-pdf.pdf?la=en.

